

Betriebsanleitung

Zwei-Bereichs-Drehmomentsensor Typ 4503B...

CE

Vorwort

Dieses Handbuch bezieht sich auf die Drehmomentsensoren Typ 4503B....

Die Betriebsanleitung muss für künftige Verwendung aufbewahrt werden und bei Bedarf am Einsatzort verfügbar sein.

Die Angaben in diesem Handbuch können jederzeit ohne Vorankündigung geändert werden. Kistler behält sich das Recht vor, das Produkt im Sinne des technischen Fortschritts zu verbessern und zu ändern, ohne Verpflichtung, Personen und Organisationen aufgrund solcher Änderungen zu benachrichtigen.

Originalsprache dieser Betriebsanleitung: deutsch

©2016 Kistler Gruppe. Alle Rechte bleiben vorbehalten.

Inhaltsverzeichnis

1.	Einleitung5							
2.	Wich	tige Informationen	6					
	2.1	Entsorgungshinweis zu Elektronikgeräten	6					
3.	Anwe	endung und typische Eigenschaften	7					
4.	Mess	systembeschreibung	8					
	4.1	Mechanischer Aufbau	8					
5.	Über	tragung	9					
6.	Dreh	zahl-/ Drehwinkelerfassung Typ 4503B	10					
7.	Elekt	rischer Anschluss des Drehmomentsensors	11					
	7.1	Speisung	11					
		7.1.1 Leistungsaufnahme des Drehmomentsensors bei unterschiedlicher						
		Versorgungsspannung	11					
	7.2	Sensorspeisung über CoMo Torque Typ 4/00B	12					
	7.3 7.4	Stockerbologung Angebluggelan	12					
	7.4 7.5	7.4 Steckerbelegung, Anschlussplan						
	7.5	Steckerbelegung des 7-pol. Einbaustecker, Standald	13					
	7.0	7 6 1 Messbereichsumschaltung						
	7.6	7.6.2 Digitalausgang seriell. Messwert über RS-232C						
		7.6.3 Anschlussplan Standardsensor	15					
		7.6.4 Anschlussplan Sensor Messbereichsumschaltung/RS-232C-Schnittstelle	16					
	7.7	7 Kabel- und Verbindung Drehmomentsensor 4503						
	8.1	Hinweise für sichere elektrische Installation	20					
9.	Mech	anischer Einbau des Drehmomentsensors	21					
	9.1	Einbauvorschläge	22					
10	Elalet	visebo und Machanischa Inhatriahnahma	24					
10.	Eleku							
	10.1	Justieren und Kalibrieren des Drehmomentsensors	26					
	10.2	Mechanische Kalibrierung						
		10.2.1 Aufbau einer einfachen Kalibrereinfichtung 10.2.2 Berechnungsbeispiel Hebelarmlänge	27 28					
11.	Dreh	momentmessungen durchführen	29					
	11.1	Einschaltvorgang des Drehmomentsensors	29					
12.	Schni	ttstellen-Kommandos	30					
	12.1	Konventionen und Syntax	30					
		12.1.1 Messgeschwindigkeiten, Reaktionszeiten	32					
		12.1.2 Drehmomentmesswerte über RS-232C-Kommando anfordern	33					

	40.0	12.1.3 Drehmomentmesswerte mittels externer Triggerung anfordern	
	12.2	Konfigurations-Kommandos	
		12.2.1 Messwertabtrage – Konfiguration für das MEAS-Kommando	
		12.2.2 Ausgabeformat definieren	
	40.0	12.2.3 Triggermodus festlegen	
	12.3	Fehlermeldungen	
	12.4	HyperTerminal [®]	40
	12.5	System	44
		12.5.1 Identifikation (*IDN?)	44
		12.5.2 Ereignisstatusregister (*ESR?)	45
	12.6	Messen	47
		12.6.1 Messwerte ermitteln (MEAS)	47
		12.6.2 Spitzenwertspeicher löschen (TRAC)	48
		12.6.3 Skalierungsbereich umschalten (INP:GAIN:MULT)	49
		12.6.4 Kontrollsignal (INP:CONT)	50
		12.6.5 Tiefpassfilter dig. Drehmomentmesswerte (OUTP:TORQ:FILT)	50
		12.6.6 Tiefpassfilter dig. Drehzahlmesswerte (OUTP:SPE:FILT)	51
		12.6.7 Drehmomentausgänge tarieren (OUTP:TARE)	52
		12.6.8 Drehwinkelausgang tarieren (TRAC:ANG)	53
		12.6.9 Automatisches Tarieren von Drehwinkel (SYST:SPE:TURN)	53
		12.6.10 Anzahl der Ausgangsimpulse (OUTP:SPE:IMP)	53
		12.6.11 Messwerte synchronisieren (INP:SYNC)	54
		12.6.12 Drehwinkelmessung Absolut/Relativ (SYST:SPE:MODE)	
	12.7	Sekundärer Ausgang (12-pol. Einbaustecker)	
		12.7.1 Konfiguration (OUTP:SEC:CONF)	
		12.7.2 Quelle (OUTP:SEC:SQUR)	56
		12.7.3 Ausgangssignalart (OUTP:SEC:ROUT)	
		12.7.4 Skalierungsbereiche (OLITP:SEC[:EXT]:SCAL)	57
		12.7.5 Tiefnassfilter (OLITP-SEC[:EXT]:EILT)	58
		12.7.6 Tarierung (OLITP:SEC:TARE)	59
		12.7.7 Ausgangssnannungshub (OLITP:SEC:VOLT:MAGN)	60
		12.7.8 Ausgangsspannungshub hei Kontrolle (OLITP'SEC:VOLT:CONT:MAGN)	60
		12.7.0 Ausgangspullpunkt Ergguenzausgang (OLITP:SEC:VOET.COMT.MVGW)	61
		12.7.10 Ausgangsfrequenzhub (OLITP:SEC:EREO:MAGN)	61
		12.7.10 Ausgangsfrequenzhub bei Kontrolle (OLITP:SEC:EBEO:CONT:MACN)	
		12.7.11 Ausgangsamplitude (OLITP:EDEO:AMPL)	02 62
		12.7.12 Ausgaligsallipilluue (OOTF.FREQ.AMFL)	02
	17 0	Derinherer Ausgang (7 pol. Einhausterker)	
	12.0	12.9.1 Digitalar Kantrallaingang (IND:DDI:EDEC):CONT)	
		12.8.1 Digitaler Kontrolleingang (INP:PRI:FREQ:CONT)	
		12.8.2 Digitale Skallerungsumschaltung (INP.RANG)	64
	12.0	T2.0.5 Digitale Skallerungsquittlerung (OUTP.KANG.ACKIN)	
	12.9	12 0.1 Zustand day Tayloytasta (IND) TADD)	65
		12.9.1 Zustand der LED (OUTDUED)	
	12 10	12.9.2 Zustand der LED (OUTP:LED)	
	12.10	A2 40 4 Einstellum son laden und an sielenne (AAEAAELOAD CAMETA	
		12.10.1 Einstellungen laden und speicnern (MEM:[LOAD SAVE])	
		12.10.2 Digitales Datenblatt	6/
13	Wartı	Ing	68
		····o	
14.	Instar	idsetzen der Messwelle	69
15.	Techn	ische Daten	70
16.	Abme	ssungen	71

	 16.1 Abmessungen für Gehäuseunterbau (GU) 16.2 Messbereiche und zulässige Höchstdrehzahl 16.3 Drebsteifigkeit und Massenträgheit 	
	16.4 Grenzwerte für dynamische Belastung	
17.	Bestellschlüssel	75
18.	Zubehör/Komponenten für Typ 4503B	76
19.	Index	77

Total Seiten 80

1. Einleitung

Wir danken Ihnen, dass Sie sich für ein Kistler Qualitätsprodukt entschieden haben. Bitte lesen Sie diese Betriebsanleitung sorgfältig durch, damit Sie die vielseitigen Eigenschaften Ihres Produkts optimal nutzen können.

Kistler lehnt soweit gesetzlich zulässig jede Haftung ab, sofern dieser Betriebsanleitung zuwider gehandelt wird oder andere Produkte, als unter Zubehör aufgeführt, verwendet werden.

Kistler bietet eine breite Palette von messtechnischen Produkten und Gesamtlösungen:

- Piezoelektrische Sensoren f
 ür die Messung von Druck, Kraft, Moment, Dehnung, Beschleunigung, Schock und Vibration
- DMS-Sensorsysteme f
 ür die Messung von Kraft und Moment
- Piezoresistive Drucksensoren und Transmitter mit den zugehörigen Messverstärkern
- Zugehörige Messverstärker (Ladungsverstärker, piezoresistive Verstärker etc.), Anzeigegeräte und Ladungskalibratoren
- Elektronische Steuer-, Überwachungs- und Auswertegeräte sowie anwendungsspezifische Software für die Messtechnik
- Datenübertragungsmodule (Telemetrie)
- Elektromechanische NC-Fügemodule und Kraft-Weg Überwachung
- Prüfstandsysteme für Elektromotoren und Getriebe in Labor, Fertigung und Qualitätssicherung

Kistler konzipiert auch ganze Messanlagen für spezielle Einsatzzwecke, zum Beispiel in der Automobilindustrie, in der Kunststoffverarbeitung und in der Biomechanik.

Unser Gesamtkatalog vermittelt eine Übersicht unseres Angebotes. Zu praktisch allen Produkten sind detaillierte Datenblätter verfügbar.

Für alle speziellen Fragen, die nach dem Studium dieser Anleitung noch offen sind, steht Ihnen der weltweite Kistler-Kundendienst zur Verfügung, der Sie auch bei anwendungsspezifischen Problemen kompetent beraten wird.

2. Wichtige Informationen

2.1 Entsorgungshinweis zu Elektronikgeräten

Elektronik-Altgeräte dürfen nicht mit dem Haushalt-Kehricht entsorgt werden. Bitte geben Sie das ausgediente Gerät zur Entsorgung an die nächstgelegene Elektronik-Entsorgungsstelle zurück oder kontaktieren Sie Ihre Kistler-Verkaufsstelle.

3. Anwendung und typische Eigenschaften

- Drehmomentsensor mit DMS-Messsystem
- Digitalisierte verschleissfreie Messsignalübertragung
- Messen von konstanten und veränderlichen Drehmomenten
- Drehmomentmessung auf der rotierenden Welle
- Optional zweiter Messbereich integriert
- Einsatz im Labor, Fertigung und Qualitätskontrolle
- Drehmomentsensor für Präzisionsmessungen
- Integrierter Drehzahlsensor, optional hochauflösender Drehzahl-/Winkelsensor bis 8 192 Impulse/Umdrehung
- 2-Farben-LED für Betriebszustand
- Galvanische Trennung zwischen Speisung und Drehmoment-Ausgangssignal
- Frei konfigurierbarer Spannungs-/Frequenzausgang
- Steuerungseingang über 7-pol. Stecker

Bild 1: Drehmomentsensor in der Standardversion

4. Messsystembeschreibung

4.1 Mechanischer Aufbau

Der Drehmomentsensor besteht aus einem Grundkörper mit darin gelagerter Messwelle mit freien Wellenenden.

Auf der Messwelle befindet sich eine Torsionsstrecke mit Dehnungsmessstreifen (DMS), eine Elektronik mit Signalverstärker und ein A/D-Wandler. Im Anschlusskasten des Grundkörpers ist die stationäre Elektronik zur Signalformung untergebracht. Es bestehen verschiedene Montagemöglichkeiten, z.B. mit dem optional erhältlichen Gehäuseunterbau (siehe Mechanischer Einbau).

5. Übertragung

Die Energie-/ Datenübertragung vom Drehmomentsensor erfolgt mittels induktiver Kopplung (Telemetrie). Hierfür werden Frequenzen aus dem ISM Band zwischen 115 ... 130 kHz verwendet.

Für das Senden von Daten an den Rotor wird die Speisefrequenz PSK Moduliert. Die Datenrate kann je nach Speisefrequenz zwischen 360 ... 406 Bit/s betragen.

Für den Empfang der Messdaten wird die Frequenz 13,56 MHz aus dem ISM Band verwendet. Die Messdaten werden vom Drehmoment-Messkörper mit bis zu 1,4 MBit/s ebenfalls per induktiver Kopplung als PSK moduliertes Signal an die Drehmoment-Auswerteeinheit übertragen. Zu den Rotor-Messdaten gehören neben dem Drehmoment die Temperatur, Versorgungsspannung sowie der EEPROM (Eectrically Erasable Programmable Read-Only Memory) Inhalt.

6. Drehzahl-/ Drehwinkelerfassung Typ 4503B...

Drehzahl/Drehwinkel-Messsystem		
Nenndrehmoment M _{nom}	N∙m	0,2/0,5/1/2/5/10/20/50/100/200/500/ 1 000/2 000/5 000
Messsystem		Magnetoresistiv mittels aufmagnetisiertem Elastomer auf Stahlring/Hallsonde
Ausgangssignal	V	5 (TTL) symmetrisch 2 Rechtecksignale um ca. 90 ° Phasenverschoben
Impulse pro Umdrehung		1 8 192
Impulstoleranz ¹⁾	Grad	≤0,03
Mindestdrehzahl für ausreichende Impulsstabilität	min⁻¹	1
Maximal zulässige Ausgangsfrequenz	kHz	500
Gruppenlaufzeit	μs	<150
Drehschwingung	Grad	<0,1
Horizontale Schwingwege des Stators	mm	±0,5
Lastwiderstand	kΩ	≥2
Referenzimpuls-Messsystem (Z-Impuls)		
Messsystem		Magnetoresistiv mittels aufmagnetisiertem Elastomer auf Stahlring
Ausgangssignal	V	5 (TTL) symmetrisch
Impulse pro Umdrehung		1
Impulstoleranz ¹⁾	Grad	0,03

¹⁾ Bei Nennbedingungen.

7. Elektrischer Anschluss des Drehmomentsensors

7.1 Speisung

Zur Speisung von Drehmomentsensoren Typ 4503B... ist eine Versorgungsspannung im Bereich von **11 ... 30 VDC** erforderlich.

Die Gleichspannung wird am 12-poligen Einbaustecker über Pin F $(+U_B)$ und A (GND) zugeführt. Die Leistungsaufnahme ist <5 W. Im Drehmomentsensor erfolgt eine galvanische Trennung zwischen Speisung und Drehmomentausgang.

7.1.1 Leistungsaufnahme des Drehmomentsensors bei unterschiedlicher Versorgungsspannung

Bild 3: Eingangsstrom in Funktion der Eingangsspannung

7.2 Sensorspeisung über CoMo Torque Typ 4700B...

7.3 Prinzip der galvanischen Trennung im Drehmomentsensor

7.4 Steckerbelegung, Anschlussplan

7.5 Steckerbelegung des 12-pol. Einbaustecker, Standard

	Funktion	PIN	Beschreibung			
	Versorgungsspannung	F A	+U _B GND	11 30 VDC, Leistungsaufnahme <5 W Bezug für +U₀		
	Schirm	Μ		Im Sensor auf Gehäuse		
	Drehmomentausgang	С	U _A	Spannungsausgang	Frequenzausgang	
	0.0			$\pm 5/10$ VDC bei $\pm M_{nom}$ an >2 k Ω	F ^A Frequenzausgang	
				5/10 VDC bei Kontrollsignalauslösung	100 kHz ± 40 kHz	
		D	AGND	Bezug für U₄	Bezug für F _A	
//// п. м. н\\ \\	Drehzahlimpulse	Н	Spur A	Aktiv, TTL Pegel		
			Spur B	Aktiv, TTL Pegel, 90° versetzt nur bei Option H, W		
		J	Spur Z	Aktiv, TTL Pegel, Referenzimpuls nur bei	Option H, W	
	Eingang 100 %	K	Kontrolle	Aus: 0 2 VDC		
	Kontrolle					
				Ein: 3,5 30 VDC		
				$R_{i,\kappa} = 10 \ k\Omega$		
	RS-232C-Schnittstelle	В	TXD	Digitale Sendeleitung		
	(CoMo Torque)	L	RXD	Digitale Empfangsleitung		
	Digitale Masse	E	DGND	Bezug für Drehzahl- bzw.		
				Drehwinkelimpulse,		
				Kontrolleingang,		
				digitale Schnittstelle RS-232C		

7.6 Steckerbelegung des 7-pol. Einbaustecker für Messbereichsumschaltung

Funktion	PIN	Beschreibung	
Messbereichsumschaltung	1	Verstärkung	Normal (1:1) mit 0 2 VDC
			Erweitert (1:x) mit 3,5 30 VDC
Eingang 100 % Kontrolle	4	Kontrolle	Aus: 0 2 VDC
			Ein: 3,5 30 VDC
	7	OGND	Optoentkoppelter Bezug für Messbereichsumschaltung
			und Kontrolleingang
RS-232C-Schnittstelle	5	TXD	Serielle Sendeleitung des Sensors
	6	RXD	Serielle Empfangsleitung des Sensors
	3	DGND	Bezug für RS-232C-Schnittstelle
Skalierungsumschaltung	2	ACK	0 VDC bei Normal (1:1)
Quittierausgang			24 VDC bei Erweitert (1:x)

7.6.1 Messbereichsumschaltung

Alle nachfolgenden Angaben gelten für den 1:10sowie für den 1:5-Messbereich.

Wird der Drehmomentsensor ab Werk zusätzlich im Messbereich 1:10 kalibriert, so kann über PIN 1 und auf dem 7-pol. Stecker der geforderte Messbereich umgeschaltet werden.

Messbereich	logischer Spannungspegel	Zustand
1:1	PIN1 = 0	U _{PIN1,7} = 0 2 V
1:10	PIN1 = 1	U _{PIN1.7} = 3,5 30 V

Für den jeweiligen Messbereich muss der logische Zustand an PIN 1 permanent erhalten bleiben. Optional kann der Messbereich über die RS-232C-Schnittstelle umgeschaltet werden.

7.6.2 Digitalausgang seriell, Messwert über RS-232C

Bei dieser Option können drehmoment-äquivalente Messwerte über die RS-232C Schnittstelle übertragen werden. Weitere Hinweise finden Sie im Kapitel "RS-232C-Kommunikation".

7.6.3 Anschlussplan Standardsensor

Bild 6: Anschlussshema des 12-pol. Einbausteckers (standard)

Einstreuende EMV-Störungen auf das Messkabel sind zu vermeiden (z.B. ausgelöst durch geschaltete Wechselrichter von Antriebs- oder Bremsmaschinen hoher Leistung)! Die Kontrollfunktion in diesem Fall bei ausgeschalteten Antrieben einleiten.

Bei **Kabellängen über 10 m** ist bei der Verteilung der Adern darauf zu achten, dass das Drehzahlsignal vom Drehmomentsignal wie im Steckverbinder durch Speiseleitungen getrennt wird, um eine gegenseitige Störung zu vermeiden.

7.6.4 Anschlussplan Sensor Messbereichsumschaltung/RS-232C-Schnittstelle

* Über den 7-poligen Stecker (PIN 4 und PIN 7) ist eine galvanisch getrennte Aufschaltung des Kontrollsignals möglich

** In störkritischen Prüfbereiche ist eine galvanische Entkopplung der RS-232C-Schnittstelle am PC sinnvoll.

7.7 Kabel- und Verbindung Drehmomentsensor 4503...

	Siehe a	uch Kabeldatenblatt 000-615	
Messen	Verbinden	Verstärken	Überwachen & Regeln
Тур 4503	F		Тур 4700В
12-pol. zu CoMo Torque (Spannung) 4503 4503	Länge (m) Material-Nr. 2,5 18008967 variabel 18008968	12-pol. zu CoMo Torque (Frequenz) 4503 4503	Länge (m) Material-Nr. 2,5 18008969 variabel 18008970
Тур 4503			SPS
7-pol. auf freie Enden 4503 4503	Länge (m) Material-Nr. 5 18008996 variabel 18008997	7-pol. auf SUB-D (RS-232C) 4503 4503	Länge (m) Material-Nr. 5 18008994 variabel 18008995
12-pol. auf freie Enden 4503 4503	Länge (m) Material-Nr. 5 18008943 variabel 18008944	12-pol. Buchse auf 12-pol. Stecker 4503 4503	Länge (m) Material-Nr. 5 18008935 variabel 18008936
Material Nr. 18008996 / 18008	997 (freie Enden)	Material Nr. 18008943 / 180	08944 (freie Enden)
Kabeldefinition1weiss24gelb57blau	n 3 grün 6 rosa	KabeldefinitionAviolettBgeDgrauEblaGgrünHsclKweiss/grünLbra	elb C rosa au F rot hwarz J weiss aun M
		<u>_</u>	

12-pol. zu maXYmos BL	Länge (m)	Material-Nr.
4503	5	18029193
4503	variabel	18029194

Messen	Verbin	den	Verstärken	Überwachen & Regeln
Тур 4503				آلان المراجع آلان المراجع<
7-pol. zu maXYmos TL¹ 4503 4503 ¹Messbereichsumschaltung	Länge (m) 5 variabel	Material-Nr. 18031756 nicht verfügbar	12-pol. zu maXYmos TL 4503 4503	Länge (m) Material-Nr. 5 18026961 variabel 18027032
Тур 4503В	6			Laptop
USB-Kabel 4503B	Länge (m) 1,8	Material-Nr. 55115378		
Allgemeine technische Daten Schutzart nach IEC/EN 60529 Anschluss Kabelart Temperaturbereich Biegeradius Datenblatt siehe www.kistler.com		IP40 7- und 12-pol. Einba LiYCY transparent ge -10 °C +70 °C ca. 10x Aussendurch 4503A (000-595), 4 9	ustecker eschirmt messer 503B (000-767)	
Zubehör Kabeldose 7-pol.	Тур	18008363		
Kabeldose 12-pol.	Тур	18008371		
SensorTool	Тур	4706A		
Kupplungen	Тур	2301A bis 2303A		

8. Verlegung des Messkabels

- Nicht parallel zu Starkstromleitungen oder Steuerleitungen verlegen.
- Nicht in der Nähe von starken elektromagnetischen Feldern, z.B. Transformatoren, Schweissgeräte, Schütze, Motoren usw. Falls dies nicht zu vermeiden ist, Messkabel in geerdetem Stahlpanzerrohr verlegen.
- Falls dies nicht zu vermeiden ist, Messkabel in geerdetem Stahlpanzerrohr verlegen.
- Kabelüberlängen vermeiden. Falls das nicht möglich ist, Überlängen nicht als geschlossenen Kabelring aufwickeln, um Induktionsflächen so klein wie möglich zu halten!

Gefahr der Störeinkopplung auf das Messsignal infolge von elektromagnetischen Feldern

Durch eine bifilaren Verlegung ergibt sich eine Verringerung von wirkenden Induktionsflächen

Bild 8: Verlegung des Messkabels

8.1 Hinweise für sichere elektrische Installation

Bild 9: Beispiel für eine sichere elektrische Installation

Achten Sie bei dem Anschlusskabel auf einwandfreie Funktion der Schirmung!

Gegebenenfalls das Eloxal der Unterseite des Gehäuseunterbaus entfernen, um vollflächigen elektrischen Kontakt mit dem Maschinenbett herzustellen.

9. Mechanischer Einbau des Drehmomentsensors

Der Drehmomentsensor kann je nach Anwendung unterschiedlich eingebaut werden.

Da selbst bei kleinem Achsversatz sehr hohe Querkräfte und Biegemomente entstehen können, muss der Drehmomentsensor immer mit Ausgleichskupplungen versehen werden.

Generell gilt:

- Die Anlage muss entsprechend den geltenden Richtlinien und Gesetzen mit einem Berstschutz gesichert sein
- Es wird empfohlen, den Wellenstrang auf die torsionsund biegekritischen Drehzahlen zu berechnen. Im Betrieb sind diese Drehzahlen zu vermeiden. Für einen sicheren Betrieb der Anlage empfiehlt es sich, etwa 30 % unterhalb bzw. oberhalb der kritischen Drehzahlen zu bleiben
- Nach dem Einbau sollte je nach Drehzahl eine Betriebswuchtung der Anlage nach DIN 2060 erfolgen
- Die Maschinenschwingungen sollten nach VDI 2056 überprüft werden

9.1 Einbauvorschläge

Den geringsten Aufwand erfordert meist der freie fliegende Einbau. Er ist nur bei geringen Drehzahlen und hohen Momenten verwendbar. Durch das höhere Gewicht des Drehmomentsensorgehäuses sind die in den Tabellen der Kupplungshersteller angegebenen Drehzahlen nicht erreichbar. Auch vermindert die Länge und Nachgiebigkeit der Wellen ausserhalb der Kupplungen die Biegeresonanz.

Festhalten des Gehäuses:

Das Gehäuse des Drehmomentsensors ist am Mitrotieren (in Folge Lagerreibung) zu hindern.

Zu diesem Zweck ist das Drehmomentsensorgehäuse mit einer Öse zu versehen.

In diese Öse kann man z.B. eine Spiralfeder einhängen. Der Verdrehschutz soll auf keinen Fall starr sein, leichte Pendelbewegungen des Gehäuses sind belanglos.

Es sollen auch keine grossen Zugkräfte auf den Drehmomentsensor wirken.

Montage von Kupplungen:

Bei der Montage ist darauf zu achten, dass keine Kräfte zwischen Gehäuse und Welle aufgebracht werden. Beim Aufziehen der Kupplungen muss der gegenüberliegende Wellenstumpf abgestützt werden, das Gehäuse bleibt dabei frei. Das Gleiche gilt sinngemäss für das Abziehen der Kupplungen.

Einbau Drehmomentsensor zwischen Antrieb und Bremse mit Verdrehsicherung

Verdrehsicherung (soll keine grossen Zugkräf te auf den Drehmomentsensor bringen)

Einbau Sensor ohne Haltewinkel oder Gehäuseunterbau (GU)

Einbau Drehmomentsensor zwischen Antrieb und Bremse mit Gehäuseunterbau (GU)

Diese Montage zwischen zwei Vollkupplungen ist generell immer möglich, speziell bei kleinen Momenten und hohen Drehzahlen jedoch unbedingt erforderlich.

Die Masse und Wuchtgüte der Kupplungen müssen der Anwendung entsprechen.

Die Angaben im Datenblatt sind Richtwerte für sorgfältige Montage.

Gehäuseunterbau (GU) bzw. Haltewinkel

Bild 11: Einbau Sensor mit Haltewinkel oder Gehäuseunterbau (GU)

Montage mit der Option Gehäuseunterbau GU:

- Haltewinkel bzw. GU mit Schrauben am Stator befestigen. Schrauben sichern
- Die Montageflächen vom Gehäuseunterbau müssen plan auf Montageplatte aufliegen
- Wellenstrang ausrichten, hierbei sind die Angaben der Kupplungshersteller zu beachten
- Haltewinkel bzw. Gehäuseunterbau auf Montageplatte befestigen und sichern

10. Elektrische und Mechanische Inbetriebnahme

An der Seite (Stecker) befindet sich eine Leuchtdiode (LED) welche zur Darstellung des Betriebszustandes dient. Die LED kann in drei Variationen leuchten:

GRÜN	GRÜN und ROT	ROT
	Û	
	ORANGE	

Einschaltvorgang

Während des Einschaltens (Betriebsspannung wird angelegt), blinkt die LED grün. Danach folgt eine kurze Kommunikation mit der Rotorelektronik, welche die LED orange blinken lässt. Kurze Zeit darauf wird die LED grün leuchten, womit der Drehmomentsensor betriebsbereit ist. Dieser Vorgang kann insgesamt ca. 15 Sekunden dauern.

Kommunikation PC \Leftrightarrow Drehmomentsensor

Kommuniziert die Statorelektronik mit der Rotorelektronik, so leuchtet die LED orange. Ebenso verhält sich die LED, wenn eine Kommunikation zwischen Anfragesteller (z.B. PC) und Drehmomentsensor über die RS-232C-Schnittstelle vorherrscht.

Drehmomentüberlast

Falls der Drehmomentsensor Typ 4503B... mechanisch überlastet wird (Nennmoment +10 % = max. Gebrauchsmoment), so leuchtet die LED rot. Diese kehrt wieder in den Zustand grün zurück, wenn der Drehmomentsensor innerhalb des Nenndrehmoments betrieben wird.

Fehlerhaftes Verhalten vom Drehmomentsensor

Falls die Drehmomentsensorelektronik nicht ordnungsgemäss funktioniert, so blinkt die LED rot. Falls beim erneuten Einschalten des Drehmomentsensors dasselbe Verhalten vorliegt, so muss der Drehmomentsensor zum Kistler-Werk geschickt werden.

GRÜN	GRÜN blinkend	ORANGE	ROT	ROT blinkend	Ursache
	\checkmark				Einschaltzustand
\checkmark					Drehmomentsensor betriebsbereit
		~			Kommunikation zwischen Stator ⇔ Rotor Anfragesteller (PC) ⇔ Sensor
			$\overline{\mathbf{S}}$		Sensor mechanisch überlastet
				\odot	Elektrik des Drehmomentsensors defekt, Kistler informieren!

Tarierung

Für die Tarierung stehen dem Nutzer drei Möglichkeiten zur Verfügung:

Mechanisch per Tastendruck

Mittels eines Innensechskantschlüssels der Grösse 2,5 kann die Verschlussschraube T entfernt werden. Eine anschliessende Betätigung des innenliegenden Tasters tariert alle Ausgänge des Sensors.

Elektrisch per Steuerspannung

Über den 7-pol. Stecker (Tarierleitung) wird der Sensor mittels einer Spannung 5 ... 30 V ebenfalls tariert

Digital per RS-232C oder USB

Die Tarierung kann über die im Lieferumfang enthaltene Software SensorTool Typ 4706A oder durch das Einrichten einer HyperTerminal[®] Verbindung erfolgen. Wird per RS-232C tariert, kann dies über den 7-pol.

Wird per RS-232C tariert, kann dies über den 7-pol. Stecker erfolgen. Um per USB tarieren zu können, muss die Veschlusskappe entfernt werden.

10.1 Justieren und Kalibrieren des Drehmomentsensors

Die Verstärkung kann nur an der Messwertverarbeitung eingestellt werden.

Dazu kann am Kontrolleingang Pin K des 12-poligen Einbausteckers ein TTL- oder 3,5 ... 30 V-Signal angelegt werden, um einen Ausgangssignalhub zu erzeugen, was dem Nennmoment entspricht (siehe dazu Typenschildaufdruck des Elektronikgehäuses des Drehmomentsensors).

Möglicher Einstellvorgang:

- Drehmomentsensor einschalten und mind. 10 Minuten warmlaufen lassen
- Drehmomentsensor muss drehmomentfrei sein, möglichst auf der Messseite die Kupplung entfernen
- Nullpunkt in der Messwertverarbeitung einstellen
- Kontrollsignal erzeugen
- Nullpunkt kontrollieren
- Gegebenenfalls Vorgang wiederholen.

Eine mechanische Kalibrierung ist genauer als ein Kalibrierdurchlauf mit Hilfe des Kontrollsignals!

10.2 Mechanische Kalibrierung

Hierzu wird eine Kalibriereinrichtung mit Hebelarm und Gewichten zur Drehmomenterzeugung benötigt.

Schritte beim Kalibrieren:

- Drehmomentsensor einschalten, mind. 10 Minuten warmlaufen lassen
- Drehmomentsensor mit Nennmoment belasten und wieder entlasten
- Nullpunkt genau abgleichen bzw. dokumentieren
- Drehmomentsensor mit bekanntem Drehmoment belasten
- Anzeige auf entsprechendes Drehmoment einstellen bzw. dokumentieren

Aufnahme einer Kalibrierkurve

Wenn der Drehmomentsensor nur in einer Momentrichtung genutzt wird, reicht eine einfache Messung.

- Drehmomentsensor mit Nennmoment belasten und wieder entlasten
- Drehmomentsensor in 20 %-Schritten belasten bis zum vollen Nennmoment. Anschliessend in der gleichen Weise wieder entlasten. Zwischen den einzelnen 20 %-Schritten mindestens 30 Sekunden warten bis Messwert stabil ansteht, dann erst Anzeigewert registrieren

Für komplexere Einsatzfälle empfehlen wir, jährlich eine ausführliche Kalibrierung nach DIN 51309 vorzunehmen.

Bild 12: Aufbau einer Kalibriereinrichtung

10.2.2 Berechnungsbeispiel Hebelarmlänge

$$L = \frac{M}{m \cdot g}$$
, wobei

Beispiel: $m = 1 \text{ kg}, M = 10 \text{ N} \cdot \text{m}$

$$\Rightarrow L_{M=10 \text{ N} \cdot \text{m}} = \frac{M}{m \cdot g} = \frac{10 \text{ N} \cdot \text{m}}{1 \text{ kg} \cdot 9,80665} \frac{\text{s}^2}{\text{m}} \approx 1,0197 \text{ m}$$

11. Drehmomentmessungen durchführen

11.1 Einschaltvorgang des Drehmomentsensors

12. Schnittstellen-Kommandos

Über die RS-232C oder USB-Schnittstelle ist eine Kommunikation zwischen Drehmomentsensor Typ 4503B... und einem Bedien-PC möglich. Die zu verwendeten ASCII-Kommandos sind am SCPI-Standard (Standard Commands for Programmable Instruments) angelehnt, um eine möglichst einfache und leicht verständliche Kommunikationsweise anzustreben.

Parameter der RS-232C-Schnittstelle:

57600 Bits/Sekunde 8 Datenbits 1 Stoppbit keine Parität keine Flusssteuerung

Parameter der USB-Schnittstelle:

921600 Bits/Sekunde 8 Datenbits 1 Stoppbit keine Parität keine Flusssteuerung

Jedes ASCII-Kommando enthält eine ASCII-Zeichenkette, gefolgt von einer Terminierung. In den folgenden Kapiteln werden Kommandos aufgeführt und beschrieben, bei denen aufgrund der Übersichtlichkeit die Terminierungs-Zeichenketten weggelassen werden.

12.1 Konventionen und Syntax

Der Drehmomentsensor Typ 4503B... antwortet über die Schnittstelle nur dann, wenn dieser vom Anfragesteller (z.B. PC) ein Kommando übermittelt bekommt (d.h. PC: **Master**, Typ 4503B... : **Slave**).

Es wird immer eine Antwort vom Typ 4503B ... gesendet (Quittierung), auch wenn vom Anfragesteller nur Konfigurationen übermittelt werden.

Vom Anfragesteller werden ausnahmslos ASCII-Kommandos gesendet. An diese Kommandos müssen am Ende immer Terminierungszeichen angehängt werden. Der Typ 4503B... übermittelt dieselbe Terminierung zum Anfragesteller.

Syntaxbeispiel zur Ermittlung des Drehmoments:

Anfragesteller:	MEAS:TORQ? <cr><lf></lf></cr>
Typ 4503B antwortet:	120.089 <cr><lf></lf></cr>

Gross- und Kleinschreibung wird nicht berücksichtigt. Auch ignoriert der Befehlsinterpreter des Typ 4503B... event. vorangestellte Leerzeichen und Leerzeichen innerhalb des Kommandos.

Beispiele:

Typisch identisch mit identisch mit MEAS:TORQ?<CR><LF> MEAS :torq ? <CR><LF> MeaS :Torq?<CR><LF>

Syntax und Konventionen

Das Ende einer Kommandokette muss immer mit einer Terminierung erfolgen (<CR><LF>).

Ein Kommando für eine Anfrage endet mit einem Fragezeichen ("?"), z.B. MEAS:TORQ?<CR><LF>.

Bei einer erfolgreichen Konfigurationsübermittlung wird der Zahlenwert Null ("O") als Erfolgsmeldung zurückgesendet.

Beispiel:

Anfragesteller: OUTI Typ 4503B... antwortet: 0<CR

OUTP:TARE:AUTO<CR><LF> 0<CR><LF>

Kommata in Gleitkommazahlen werden in punktierter Form definiert (z.B. 9.998).

Falls ein Kommando aus unterschiedlichen Gründen nicht akzeptiert wird, so sendet die Drehmoment-Auswerteeinheit Typ 4503B ... einen negativen Fehlerwert zurück.

Beispiel eines falsch geschriebenen Kommandos:

Anfragesteller:MEA:TORQ?<CR><LF>Typ 4503B ... antwortet:ERR-100<CR><LF>

Fehlerwerte und deren Bedeutungen können aus dem Kapitel **"Fehlermeldungen"** entnommen werden.

Im Folgenden werden aus Gründen der Übersichtlichkeit die Terminierungszeichen (<CR><LF>) weggelassen.

12.1.1 Messgeschwindigkeiten, Reaktionszeiten

Je nach Konfiguration im *CONFiguration*- und *FORMat*-Funktionsblock werden unterschiedliche Übertragungsgeschwindigkeiten über die RS-232C-Schnittstelle realisiert (Messwertabfragen pro Sekunde). Siehe dazu die Kommandos:

CONF (Messwertabfrage – Konfiguration für das MEAS-Kommando) FORM (Ausgabeformat definieren)

Bei jeder Messwertabfrage wird ein drehmomentäquivalenter Wert übertragen. Dabei können schnelle Drehmomentänderungen in digitale Grössen wiedergegeben werden.

Es bietet sich an, das Kurzkommando *M*? (anstatt *MEAS*? oder *MEAS:TORQ*?) zu verwenden, um drehmomentäquivalente Messwerte mit hoher Übertragungsrate zu übertragen. Dabei wird die Reaktionszeit des Befehlsinterpreters im Drehmomentsensor verkürzt.

Die folgenden Übertragungsraten gelten für die Nutzung des Kurzkommandos *M*? bzw. externer Triggerung mittels eines digitalen Signals (Kontrolleingang).

Triggerungsart	Ausgabeformat FORM:DATA: <ausgabeformat></ausgabeformat>	Messperiode in ms realisierbar	Messungen pro Sekunde realisierbar	
Kommando M?	ASC	3	333	
Kommando M?	HEX	2,5	400	
Kommando M?	BIN	2	500	
extern digital	ASC	2,5	400	
extern digital	extern digital HEX		500	
extern digital	BIN	1	1000	

Je höher die Abtastrate, desto mehr Messwerte können in einem Messdurchlauf entnommen werden. Dementsprechend steigt die Interpretationsfähigkeit der entstandenen Messkurve.

12.1.2 Drehmomentmesswerte über RS-232C-Kommando anfordern

Drehmomentmesswerte können mit den Kommandos

MEAS:TORQ? MEAS? (falls zuvor mit CONF:TORQ konf.) M? angefordert werden. Dabei wird nach jeder Anfrage nur ein drehmoment-äquivalenter Messwert übertragen. Für die spätere Interpretation der Messkurve ist die Zuordnung des positiven Drehmomentnennwertes und des digitalen Ausgabewertes entscheidend. Dabei entstehen folgende D Zuordnungen: Aus der Grafik entsteht folgende Beziehung D(pos. Nenndrehmoment) zwischen dem Drehmoment M und des drehmoment-äquivalenten Messwerts D: D(unbelastet) Drehmoment digitaler Datenwert M(pos. Nennmom.) D(pos. Nennmom.) D(neg. Nenndrehmoment) Μ 0 D(unbelastet) M(pos. Nenndrehmoment) M(neg. Nennmom.) D(neg. Nennmom.) M(neg. Nenndrehmoment) 0

Der Wertebereich des drehmoment-äquivalenten Messwerts *D* erstreckt sich von 0 ... 65 535 (Digits) und kann hierbei nur positive Werte annehmen.

Da beim Einbau des Drehmomentsensors Offsetverschiebungen infolge von mechanischen Verspannungen vorkommen können, empfiehlt es sich, nur den digitalen Ausgangshub

 $D_{Hub} = D_{(pos. Nenndrehmoment)} - D_{(unbelastet)}$

zu bewerten. Der digitale Ausgangshub bei Nenndrehmoment entnehmen Sie aus Ihrem Kalibrierprotokoll oder aus dem Speicherbereich des Drehmomentsensors mit dem Kommando *MEM:DATA:MAGN?* (*MEM:EXT:DATA: MAGN?* für den erweiterten Messbereich).

Der Nenndrehmomentbereich des Drehmomentsensors kann zusätzlich mit dem Kommando *MEM:RANG?* (*MEM: EXT:RANG?* für den erweiterten Messbereich) ermittelt werden.

Beispiel:

PC-Kommando	\rightarrow	Antwort d	es Drehmomentsensors
MEM:DATA:MAGN?	\rightarrow	26658	(digitaler Ausgangshub
			für 1:1-Messbereich)
MEM:RANG?	→	500	(Nenndrehmoment für
			1:1-Messbereich in N·m)

Daraus folgt:

Im 1:1-Messbereich entsteht bei 500 N·m ein digitaler Ausganghub von 26658, der dem digitalen Offsetwert im unbelasteten Fall hinzuaddiert wird.

12.1.3 Drehmomentmesswerte mittels externer Triggerung anfordern

Die **externe Triggerung** mit einem digitalen Signal kann nur erfolgen, wenn zuvor mit dem *TRIGger*-Kommando einmalig nach dem Einschaltzustand der Drehmomentsensor initialisiert wurde. Siehe dazu das Kommando:

TRIG (Triggermodus festlegen)

Bei jedem Triggerungsvorgang vom Anfragesteller (z.B. PC oder SPS) wird ein drehmoment-äquivalenter Messwert vom Drehmomentsensor übertragen.

Benutzen Sie hierbei den externen digitalen Kontrolleingang (PIN K des 12-poligen Einbausteckers oder PIN 4 des 7-poligen Einbausteckers). Die Zuordnungen zwischen logischen Zuständen und Spannungspegeln entnimmt man aus dem Kapitel "Steckerbelegung, Anschlussplan".

Die Periode $T_{Trigger}$ (Messperiode) sollte nie kürzer sein, als im Kapitel "Messgeschwindigkeiten, Reaktionszeiten" vorgegeben, um eine sichere RS-232C-Übertragung vom Drehmomentsensor zu gewährleisten!

Während den zyklischen Triggerungen akzeptiert der Drehmomentsensor keine RS-232C-Kommandos vom Anfragesteller (z.B. PC). Um eine Kommunikation wieder zu etablieren, müssen die zyklischen Triggerungen vorher beendet werden.

12.2 Konfigurations-Kommandos

INPut

Mit der **INPut-**Kommandogruppe wird massgeblich die Rotorelektronik beeinflusst. Das Kontrollsignal kann in dieser Kommandogruppe aktiviert oder deaktiviert werden. Auch die Verstärkungsumschaltung (Auswahl zwischen 1:1- und 1:10-Messbereich) wird hier vorgenommen.

CONFiguration und FORMat

In diesen Kommandogruppen wird festgelegt, welche Messwertarten und welche Ausgabeformate definiert werden sollen.

TRIGger

Mit der **TRIGger-**Kommandogruppe kann das Drehmomentsensorverhalten festgelegt werden, falls ein Signalwechsel am Kontrolleingang getätigt wird (Auslösen der Kontrolle oder drehmoment-äquivalente Messwertübergabe über die RS-232C-Schnittstelle).

MEMory

In dieser Kommandogruppe sind alle Kalibrier- und Benutzerdaten abgelegt.

12.2.1 Messwertabfrage – Konfiguration für das MEAS-Kommando

CONF:<function>

Parameter	<function> =</function>	TORQ	Drehmomentmesswert
		TEMP*	Rotortemperatur
		SPE*	Drehzahl
		ANG*	Winkelmessung
		ALL**	Alle Messwerte

*Hinweis: Nur im Ausgabeformat PYS verfügbar, sonst Fehlermeldung ERR-121

** Hinweis: Wird in allen Ausgabeformaten als PYS ausgegeben.

Beschreibung

Durch dieses Kommando wird die Art der Messwertabfrage festgelegt. Mit **CONF:TORQ** kann anschliessend mit **MEAS?** ein drehmoment-äquivalenter Wert ermittelt werden. Durch **CONF:TEMP** wird durch ein anschliessendes *MEAS*? die Rotortemperatur übermittelt. Die definierte Konfiguration kann mit **CONF**? ermittelt werden.

Bemerkung

Das Kurzkommando M? übermittelt ausschliesslich einen drehmoment-äquivalenten Messwert.

Standard: CONF:TORQ

Beispiele PC-Kommando	→		Antwort des Drehmomentsensors
CONF:TORQ	÷	0	(Konfiguration Drehmoment- messwert)
CONF?	\rightarrow	TORQ	
FORM:DATA:ASC	\rightarrow	0	(dezimales
			Ausgabeformat)
MEAS?	\rightarrow	32765	(drehmoment-
			äquivalenter Wert)
MEAS?	\rightarrow	32767	
CONF:TEMP	\rightarrow	0	(Konfiguration
			Rotortemperatur)
CONF?	\rightarrow	TEMP	
MEAS?	\rightarrow	26	(Rotortemperatur in °C)

12.2.2 Ausgabeformat definieren

FORM:DATA:<function>

Parameter <fu< th=""><th>nction> =</th><th>ASC</th><th>(dezimales</th></fu<>	nction> =	ASC	(dezimales
			Ausgabeformat)
		HEX	(hexadezimales
			Ausgabeformat)
		BIN	(binäres
			Ausgabeformat)

Anfrage FORM:DATA?

Beschreibung

Das Ausgabeformat über die RS-232C-Schnittstelle bezüglich des Drehmomentmesswertes kann mit diesem Kommando beeinflusst werden. Durch **FORM:DATA:ASC** wird ein ASCII-Format in dezimaler Form definiert. Durch **MEAS?** (oder **MEAS:TORQ?** oder **M?**) wird ein drehmoment-äquivalenter Messwert (0 ... 65 535) übertragen. Mit **FORM:DATA:HEX** wird ein hexadezimales Ausgabeformat definiert (0000 ... FFFF).

Ein binäres Ausgabeformat (2 Bytes: <HBYTE><LBYTE>, wobei

 $(H/L)BYTE \in \left\{00000000_2...11111111_2\right\}),$

wird mit FORM:DATA:BIN eingestellt.

Bemerkung

Beachten Sie, dass beim binären Ausgabeformat Nutzbytes vorkommen, die den Zeichen der Terminierung entsprechen können! Werten Sie deshalb in Ihrer Schnittstellenapplikation nur die 2 letzten der 4 Bytes (<HBYTE> <LBYTE><**CR**><**LF**>) als Terminierung aus!

Standard FORM:DATA:ASC

Beispiele

PC-Kommando	\rightarrow	Antwort des Drehmoment- sensors
CONF:TORQ	\rightarrow 0	(Konfiguration Drehmoment- messwert)
FORM:DATA:ASC	$\rightarrow 0$	(dezimales Ausgabeformat)
FORM:DATA?	\rightarrow ASC	C C
M?	→ 4623	8
CONF:TORQ	\rightarrow 0	
FORM:DATA:HEX	\rightarrow 0	(hexadezimales Ausgabe- format)
FORM:DATA?	\rightarrow HeX	
M?	\rightarrow B490	C (= 46236 ₁₀)
CONF:TORQ	\rightarrow 0	
FORM:DATA:BIN	\rightarrow 0	(binäres Datenformat)
FORM:DATA?	\rightarrow BIN	
M?	→ <101	10100><10011111>
	(= 4623	19 10)

12.2.3 Triggermodus festlegen

TRIG:MODE:<function>

Parameter	<function> =</function>	CONT	(externer Trigger aktiviert/deaktiviert Kontrollsignal)
		MEAS*	(externer Trigger löst Messwertübertragung über RS-232C aus)

Anfrage TRIG:MODE?

*Hinweis: TRIG:MODE:MEAS kann nur das Drehmomentmesswert (CONF:TORQ) in dem zuvor eingestellten Ausgabeformat ASC, HEX, BIN, BWT ausgegeben werden.

Beschreibung

Durch dieses Kommando wird festgelegt, welche Aktion der Drehmomentsensor bei externer Triggerung am Eingangs-Pin K (digitales TTL-Signal) durchführen soll. Mit **TRIG:MODE:CONT** wird bei externer Triggerung (permanenter logischer Zustand) das Kontrollsignal aktiviert oder deaktiviert. Durch **TRIG:MODE:MEAS** übermittelt der Drehmomentsensor einen drehmoment-äquivalenten Messwert bei externer Triggerung. Pro Triggervorgang (logischer 0-1-Zustandswechsel an PIN K des 12-poligen Einbausteckers) wird ein Messwert übertragen.

Bei einer getriggerten Messwertübergabe sollten Sie nie schneller triggern, als im Kapitel "Messgeschwindigkeiten, Reaktionszeiten" vorgegeben, um sichere RS-232C-Übertragungen zu gewährleisten!

Standard TRIG:MODE:CONT

Beispiele		
PC-Kommando	\rightarrow	Antwort des
		Drehmomentsensors
TRIG:MODE:CONT	$\rightarrow 0$	(Kontrollsignal bei ext.
		Triggerung)
TRIG:MODE?	→ CONT	
Trigger: 1-Zustand	→ <keine antwor<="" th=""><th>rt> (Kontrollsignal ein)</th></keine>	rt> (Kontrollsignal ein)
Trigger: 0-Zustand	→ <keine antwor<="" th=""><th>rt> (Kontrollsignal aus,</th></keine>	rt> (Kontrollsignal aus,
00		Normalbetrieb)
FORM:DATA:ASC	$\rightarrow 0$	(dezimales
		Ausgabeformat)
TRIG:MODE:MEAS	$\rightarrow 0$	(Messwertübertr. Bei ext.
		Triggerung)
TRIG:MODE?	→ MEAS	
Trigger: 0-1-Wechsel	∕ → 43788	(drehmoment-ägui-
00		valenter Messwert)
Trigger: 0-1-Wechsel	∕ → 43956	
Trigger: 0-1-Wechsel	∕ → 44228	

12.3 Fehlermeldungen

Die Drehmoment-Auswerteeinheit Typ 4503B... übermittelt über die Schnittstelle einen negativen Fehlerwert (**"ERR-xxx"**), falls ein Kommando aus unterschiedlichen Gründen nicht akzeptiert wurde (siehe folgende Tabelle).

Fehlerwert	Fehlerbeschreibung	Abhilfe
ERR-100	Kommando wurde nicht verstanden.	Kommandosyntax überprüfen. Kommando noch mal senden, da Typ 4503B eventuell beschäftigt.
ERR-101	"?" wurde bei einer Anfrage nicht angehängt.	"?" bei Anfrage hinzufügen.
ERR-104	Berechnungsschritte führten zu einem Überlauf.	Berechnungsvariablen überprüfen (firmeninterne Nutzung).
ERR-105	Fehler beim Zugriff des nichtflüchtigen Speicherbereichs.	Speicherbereich neu beschreiben, Kistler informieren.
ERR-106	Zugriff auf geschützten Speicherbereich.	Speicherschutz aufheben (firmeninterne Nutzung).
ERR-108	Übergebene Zeichenkette zu lang.	Zeichenkette kürzen (firmeninterne Nutzung).
ERR-109	Übergebener Zahlenwert ungültig.	Zahlenwert überprüfen (firmeninterne Nutzung).
ERR-121	Ungültiges Ausgabeformat	Ausgabeformat auf PYS umstellen bzw. unter Konfiguration TORQ auswählen.

🖮 Kommunikati

HyperTerminal[®] 12.4

Mit Microsoft® HyperTerminal® ist eine grundlegende Kommunikation über die RS-232C- oder USB-Schnittstelle möglich. Die Kommandos werden manuell eingegeben, zum Typ 4503B... gesendet und wieder am Bildschirm des PC quittiert ausgegeben.

Mit Hilfe des HyperTerminal® ist man in der Lage, für die Erstinbetriebnahme oder für Service-Funktionen eine einfache Kommunikationsweise zu eröffnen.

Die Konfiguration im Typ 4503B... und des Hyperterminals soll am folgenden Beispiel näher erläutert werden.

Über die Startgruppe des Windows®-PC's wird das HyperTerminal[®] gestartet.

Wwww. Neue Verbindung Geben Sie den Namen für die neue Verbindung ein, und weisen Sie ihr ein Symbol zu: Name: [4503B
Geben Sie den Namen für die neue Verbindung ein, und weisen Sie ihr ein Symbol zu: Name: 4503B
Name: 4503B
4503B
Symbol:
OK Abbrechen

🛅 HyperTerminal

🫐 Assistent für neue Verbindungen Drahtlosnetzwerkinstallation perTerminal

Netzwerkinstallations-Assistent

Netzwerkverbindungen

HyperTerminal[®] schlägt eine neue Verbindung vor. Zur Identifikation der Verbindung ist der Name zu definieren, z.B. "4503B". Auf dem Desktop kann später die HyperTerminal®-Einstellung gespeichert werden, dazu ist hierbei ein beliebiges Symbol auszuwählen.

Die Eingabe wird mit der Schaltfläche "OK" bestätigt.

Yerbinden mit	<u>? x</u>
4503B	
Geben Sie die Rufn	ummer ein, die gewählt werden soll:
Land/Region:	Deutschland (49)
Ortskennzahl:	
Rufnummer:	
Verbindung herstellen über:	COM1 🔽
	COM1
	COM2
	LOM12

Anschliessend wird die Verbindung mit der RS-232C- oder USB-Schnittstelle definiert.

Die USB-Schnittstelle wird im PC-System als virtueller COM-Port dargestellt, hier beispielsweise "COM12".

Die Konfigurationen werden mit der Schaltfläche "OK" bestätigt.

Eigenschaften von COM12	? ×
Anschlusseinstellungen	
	_
Bits pro Sekunde: 921600	
Datenbits: 8	
Parität: Keine	
Stoppbits: 1	
Flusssteuerung: Kein	
Wiederhersteller	n
OK LAbbrechen Oberr	iehmen

Zur Verwendung der USB-Schnittstelle werden die Eigenschaften des virtuellen COM-Ports wie folgt definiert:

921600 Bits pro Sekunde, 8 Datenbits, keine Parität, 1 Stoppbit, keine Flusssteuerung.

RS-232C- und USB-Kabel bezüglich Übertragungsgeschwindigkeit

Die Definition der Übertragungsgeschwindigkeit (Baudrate) hängt von der Länge und Beschaffenheit des jeweiligen Kabels ab.

🧳 4503 - HyperT	erminal		
Datei Bearbeiten /	Ansicht Anrufen	Übertragung	?
	•D 🔁 🖻		

Die Verbindung zwischen HyperTerminal und Typ 4503B... wird durch Betätigen des "**Auflegen**"-Symbols getrennt, da zuerst die Terminal-Einstellungen getätigt werden müssen (alternativ mit Menüeintrag "Anrufen" \rightarrow "Trennen").

🛷 4503 - HyperTerminal	
Datei Bearbeiten Ansicht Anrufen Übertragung	?
D 2 93 08 <u>8</u>	

Mit dem "**Eigenschaften**"-Symbol mit den COM-Port und Terminal-Einstellungen geöffnet (alternativ mit Menüeintrag "Datei" → "Eigenschaften").

Eigenschaften von 4503
Verbinden mit Einstellungen
Belegung der Funktions-, Pfeil- und Strg-Tasten für
Rücktaste sendet
Emulation:
Auto-Erkenn.
Telhet-Terminalkennung: ANSI
Zeilen im Bildlaufpuffer: 500 😴
Akustisches Signal beim Verbinden oder Trennen
Eingabecodierung ASCII-Konfiguration
OK Abbrechen

Anschliessend wird im **"Eigenschaften"**-Fenster die Kartei "Einstellungen" angeklickt. Folgende Einstellungen sind zu tätigen und entsprechen meist den Standardeinstellungen:

Belegung Funktionstasten: Rücktaste sendet: Emulation: Telnet-Terminalerkennung: Zeilen im Bildpuffer: Terminal Strg+H Auto-Erkenn. ANSI 500

ASCII-Konfiguration	<u>? ×</u>
🖵 Einstellungen für den AS	CII-Versand
🔽 Gesendete Zeilen e	enden mit Zeilenvorschub
🔽 Eingegebene Zeich	nen lokal ausgeben (lokales Echo)
Zeilenverzögerung:	0 Millisekunden
Zeichenverzögerung:	0 Millisekunden
Einstellungen für den AS Beim Empfang Zeilenv Eingangsdaten im 7-B Zu lange Zeilen im Te	CII-Empfang vorschub am Zeilenende anhängen it-ASCII-Format empfangen rminalfenster umbrechen

 # 4503
 - HyperTerminal

 Datei
 Bearbeiten
 Ansicht
 Anrufen
 Übertragung
 ?

 Image: State Stat

Durch Betätigen der Schaltfläche "**ASCII-Konfiguration**" öffnet sich das Fenster zur Definition der gesendeten und empfangenen ASCII-Zeichen. Folgende Einstellungen sollten getätigt werden:

Gesendete Zeilen enden mit Zeilenvorschub. Eingegebene Zeichen lokal ausgeben (lokales Echo).

Die Einstellungen werden mit der Schaltfläche "**OK**" bestätigt.

Das "**Eigenschaften**"-Fenster wird ebenfalls durch Betätigen der Schaltfläche "OK" geschlossen.

Die Verbindung zum Typ 4503B... kann nun etabliert werden, indem das "Anrufen"-Symbol 😰 betätigt wird (alternativ Menüeintrag "Anrufen" \rightarrow "Anrufen").

🛷 4503 - HyperTerminal	
Datei Bearbeiten Ansicht Anrufen	Übertragung ?
De 23 <u>- 7</u>	

idn?

HINWEIS

Um die Verbindung zu testen, wird über die Tastatur das Identifikationskommando "***idn?**" eingeben und mit der Eingabetaste bestätigt.

Der Drehmomentsensor Typ 4503B... wird mit der Identifikationszeichenkette antworten.

Kommandokonventionen und nützliche Eingabehilfen

Gross- und Kleinschreibung spielt keine Rolle. Leerstellen werden ebenfalls ignoriert. Sternsymbole ("*"), die beim SCPI-Standard für besondere Kommandos mit angegeben werden müssen, können weggelassen werden. Beispielsweise ist "*IDN?" identisch mit "IDN?".

Um falsch eingegebene Kommandos zu korrigieren, kann die Rücktaste (Backspace-Taste) zum Löschen von einzelnen Zeichen verwendet werden.

Mit der Eingabe des Ausrufezeichens ("!", Taste Shift+1) wird im HyperTerminal[®] das zuletzt abgeschickte Kommando vom Typ 4503B... nochmals angezeigt.

Speichern unter	·	<u>? ×</u>
Speichern in:	🕑 Desklop 💽 🕄 🗇 📁 🛄 •	
Zuletzt verwendete D Desktop Eigene Dateien	Eigene Dateien Arbeitspietz Wetzwerkumgebung	
Netzwerkumge bung	Dateiname: Image: Im	nern chen

Die Einstellungen des HyperTerminal[®] können auf dem Desktop des PC's gespeichert werden. Damit ist der Zugriff auf das HyperTerminal[®] zukünftig schnell und einfach möglich.

Dazu wird im HyperTerminal[®] mit dem Menüeintrag "Datei" \rightarrow "Speichern unter..." das Speicherungsfenster geöffnet.

Dazu wird der Speicherort "**Desktop**" ausgewählt und die Datei "4503B.ht" durch Betätigen der Schaltfläche "Speichern" gespeichert.

Auf dem Desktop erscheint anschliessend das entsprechende Symbol, das jederzeit angeklickt werden kann und wieder das HyperTerminal[®] mit den zuvor gespeicherten Einstellungen startet.

12.5 System

12.5.1 Identifikation (*IDN?)

*IDN?

Mit diesem Kommando wird der Drehmomentsensor Typ 4503B... sowie der entsprechende Drehmoment-Messrotor identifiziert. Als Antwort erhält man folgende zusammenhängende ASCII-Identifikation:

Kistler_4503B_jjjj-mm-tt_vvvv_ xxxxx_jjjj-mm-tt_vvvv

Wobei gilt:

Kistler	Kistler
4503B	Drehmomentsensor Typ "4503B".
jjjj-mm-tt	Datum in der Reihenfolge Jahr-Monat-Tag
vvvv	Versionsnummer im Format Vx.xx
xxxxx	Drehmomentsensor z.B. "4503B"

Syntaxbeispiel:

*IDN? Kistler_4503B_2016-04-02_Vx.xx_ 4503B_0000-00-00_Vx.xx

12.5.2 Ereignisstatusregister (*ESR?)

*ESR?

Mit diesem Kommando wird das Ereignisstatusregister (event status register) ausgelesen. Inhaltlich werden interne Zustände des Typ 4503B... abgebildet.

Leere Bitfelder des ESR-Registers sind unbelegt und erhalten den Wert O. Im Einschaltzustand des Typ 4503B... wird das ESR-Register gelöscht und anschliessend das PON-Bit (power on) gesetzt.

	ESR-Register							
Bit	D7	D6	D5	D4	D3	D2	D1	D0
Ereignis	PON	NSE		EXE	SC	ALE	RNG	OPC
Gewicht ung	128 (2 ⁷)	64 (2 ⁶)	32 (2 ⁵)	16 (2 ⁴)	8 (2 ³)	4 (2 ²)	2 (2 ¹)	1 (2 ⁰)
Wert	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Zuordnung:

- 0 Ereignisbit ist nicht gesetzt
- 1 Ereignisbit ist gesetzt

Ereignisbits:

- PON Einschaltzustand (power on) Sobald sich der Typ 4503B... im Messmodus befindet, wird dieses Bit gesetzt.
 NSE Geänderte Konfigurationsdaten (new settings) Sobald im Typ 4503B... Konfigurationen oder Zustandsänderungen der digitalen Eingänge vorgenommen werden (z.B. Tarierung), wird dieses Bit gesetzt.
- EXE Ausführungsfehler (execution error) Falls ein unzulässiges Kommando zum Typ 4503B... übermittelt wurde, wird dieses Bit gesetzt.

SC Sensorfunktionstest (sensor check) Falls der Funktionstest des angeschlossenen Sensors aktiviert wurde (umgangssprachlich Kontroll- oder Kalibriersignal), wird dieses Bit gesetzt.

ALE Grenzwertüberschreitung (alert occurred) Sobald ein Grenzwert überschritten wurde, wird dieses Bit gesetzt.

RNG Skalierungsbereich (scaling range) Ist der zweite Skalierungsbereich aktiv, so wird dieses Bit gesetzt.

OPC Abarbeitung abgeschlossen (operation complete) Wurde ein Kommando erfolgreich abgeschlossen, so wird dieses Bit gesetzt.

Die Ausgabe des ESR-Registers erfolgt im dezimalen Format (O_{dec} ... 255dec). Die gesetzten Bits werden nach Ermittlung des ESR-Registers gelöscht.

Syntaxbeispiel:

*ESR? 129 (PON- und OPC-Bit gesetzt)

12.6 Messen

12.6.1 Messwerte ermitteln (MEAS)

M? MEAS:<function>? MEAS:ALL?

Mit der MEAS-Kommandogruppe können einzelne Messwerte ermittelt werden. Folgende Messwertgrössen stehen zur Verfügung:

<function> =

TORQ	Drehmoment
TORQ:MIN	minimales Drehmoment
TORQ:MAX	maximales Drehmoment
SPE	Drehzahl
SPE:MIN	minimale Drehzahl
SPE:MAX	maximale Drehzahl
ANG	Drehwinkel
ANG:MIN	minimaler Drehwinkel
ANG:MAX	maximaler Drehwinkel
TEMP	Rotortemperatur
TEMP:MIN	minimale Rotortemperatur
TEMP:MAX	maximale Rotortemperatur

Der Drehmomentmesswert wird in dem gegenwärtigen Ausgabeformat übermittelt. Alle anderen Messwerte werden als dezimale Gleitkommazahl übermittelt.

Syntaxbeispiele:

MEAS:TORQ? 56.556	(Drehmoment-Messwert)
MEAS:SPE? 10270 MEAS:ANG? 90.124	(Drehzahl-Messwert) (Drehwinkel-Messwert)

Mit **MEAS:ALL?** können alle relevanten Messgrössen auf einmal übermittelt werden. Die Reihenfolge gliedert sich wie folgt:

<time>l<torque>l<speed>l<angle>l<temp_rotor>

<time></time>	Zeitstempel
<torque></torque>	Drehmoment
<speed></speed>	Drehzahl
<angle></angle>	Drehwinkel
<temp_rotor></temp_rotor>	Temperatur Drehmoment-Messrotor

Die senkrechte Trennzeichen ("I") repräsentieren den ASCII-Code 124_{dec} (7C_{Hex}).

Syntaxbeispiel:

MEAS:ALL? 1150.91|56.556|10270|90.124|50.125

Mit **M?** (Kurzform von MEAS:TORQ?) wird das Drehmoment (in Abhängigkeit vom gegenwärtigen Ausgabeformat) als Messwert ermittelt.

Syntaxbeispiel: M? 56.556

12.6.2 Spitzenwertspeicher löschen (TRAC)

TRAC:<function>:CLR TRAC:<function>:CLE

Mit dieser Kommandogruppe können interne Min.-/Max.-Speicher zurückgesetzt (gelöscht) werden. Folgende Speicher stehen zur Verfügung:

alle Min/MaxSpeicher minimales Drehmoment maximales Drehmoment minimale Drehzahl maximale Drehzahl minimaler Drehwinkel maximaler Drehwinkel minimale Temperatur Messrotor maximale Temperatur Messroto	
	(alle Min/MaxSpeicher
CLR	(nur minimales Drehmoment gelöscht)
	alle <i>N</i> minim maxin minim maxin minim maxin

Das Kommandofragment CLR ist gleichbedeutend wie CLE.

12.6.3 Skalierungsbereich umschalten (INP:GAIN:MULT)

INP:GAIN:MULT:ON INP:GAIN:MULT:OFF INP:GAIN:MULT:STAT?

Mit dem Kommando **INP:GAIN:MULT:ON** wird der zweite Skalierbereich ausgewählt werden.

Mit **INP:GAIN:MULT:OFF** erfolgt die Umschaltung zum ersten Skalierbereich.

Durch **INP:GAIN:MULT:STAT?** wird ermittelt, ob der zweite Skalierbereich aktiv ist (Antwort "**ON**"). Ist der erste Bereich aktiv, so antwortet der Typ 4503B... mit der Zeichenkette "**OFF**".

Syntaxbeispiele:

INP:GAIN:MULT:ON (2. Skalierbereich aktivieren) 0 INP:GAIN:MULT:STAT? ON INP:GAIN:MULT:OFF (1. Skalierbereich aktivieren) 0 INP:GAIN:MULT:STAT? OFF

Bemerkungen

Die Messbereichsumschaltung darf nur angewendet werden, wenn der Drehmomentsensor tatsächlich im 1:10-Messbereich kalibriert worden ist. Mit der Anfrage **MEM:EXT:VALI?** erfährt der Anwender, ob der Drehmomentsensor im 1:10-Messbereich kalibriert wurde (siehe MEMory-Kommandogruppe).

12.6.4 Kontrollsignal (INP:CONT)

INP:CONT:ON INP:CONT:OFF INP:CONT:STAT?

Das Kontrollsignal (zum Funktionstest) wird mit **INP:CONT:ON** aktiviert. Durch **INP:CONT:OFF** wird das Kontrollsignal wieder deaktiviert.

Durch **INP:CONT:STAT?** wird ermittelt, ob das Kontrollsignal gegenwärtig aktiv ist (Antwort "**ON**"). Ist das Kontrollsignal ausgeschaltet, so antwortet der Typ 4503B... mit der Zeichenkette "**OFF**".

Syntaxbeispiele:

INP:CONT:ON

0

0

(Kontrolle eingeschaltet)

INP:CONT:STAT? ON

INP:CONT:OFF

(Kontrolle ausgeschaltet)

INP:CONT:STAT? OFF

12.6.5 Tiefpassfilter dig. Drehmomentmesswerte (OUTP:TORQ:FILT)

OUTP:TORQ:FILT:FREQ<cutOffFreq> OUTP:TORQ:FILT:FREQ?

Für die digitale Drehmomentmesswertübertragung kann ein separater Tiefpassfilterwert zweiter Ordnung eingestellt werden. Dieser lässt sich mit **OUTP:TORQ:FILT:FREQ** <**cutOffFreq>** parametrieren.

<cutOffFreq> =

0.1	0,1	Hz
0.2	0,2	Hz
0.5	0,5	Hz
1	1	Hz
2	2	Hz
5	5	Hz
10	10	Hz
20	20	Hz
50	50	Hz
60	60	Hz
100	100	Hz

120	120	Hz
200	200	Hz
500	500	Hz
1000	1	kHz
2000	2	kHz
5000	5	kHz
10000	10	kHz

Syntaxbeispiele:

0

OUTP:TORQ:FILT:FREQ1000

(Filterfrequenz 1 kHz)

OUTP:TORQ:FILT:FREQ? 1000

12.6.6 Tiefpassfilter dig. Drehzahlmesswerte (OUTP:SPE:FILT)

OUTP:SPE:FILT:FREQ<cutOffFreq> OUTP:SPE:FILT:FREQ?

Für die digitale Drehzahlmesswertübertragung kann ein separater Tiefpassfilterwert zweiter Ordnung eingestellt werden. Dieser lässt sich mit **OUTP:SPE:FILT:FREQ** <**cutOffFreq>** parametrieren.

<cutOffFreq> =

0.1	0,1	Hz
0.2	0,2	Hz
0.5	0,5	Hz
1	1	Hz
2	2	Hz
5	5	Hz
10	10	Hz
20	20	Hz
50	50	Hz
60	60	Hz
100	100	Hz
120	120	Hz
200	200	Hz
500	500	Hz
1000	1	kHz
2000	2	kHz
5000	5	kHz
10000	10	kHz

Syntaxbeispiele:

OUTP:SPE:FILT:FREQ10 (0 OUTP:SPE:FILT:FREQ? 10

(Filterfrequenz 10 Hz)

4503B_002-736d-05.16

12.6.7 Drehmomentausgänge tarieren (OUTP:TARE)

OUTP:TARE:AUTO OUTP:TARE:ON OUTP:TARE:OFF OUTP:TARE:STAT?

Die digitale Drehmomentmesswertübertragung sowie die physikalischen Ausgänge der Stecker bezüglich Drehmomentmessung können mit dem Kommando **OUTP:TARE:AUTO** gleichzeitig auf den Ausgangsnullpunkt tariert werden (Sammeltarierung).

Mit dem Kommando **OUTP:TARE:ON** lässt sich die Sammeltarierung manuell einschalten und mit **OUTP:TARE:OFF** deaktivieren.

Sammeltarierung ermitteln

Durch **OUTP:TARE:STAT?** lässt sich ermitteln, ob die Sammeltarierung aktiv ist oder nicht. Sind nicht alle physikalische Ausgänge bezüglich Drehmomentmessung tariert, so antwortet der Typ 4503B... mit **"OFF"**. Liegt die Sammeltarierung vor, so wird mit **"ON"** geantwortet.

Syntaxbeispiele:

ON

OUTP:TARE:AUTO 0	(Sammeltarierung der dig. Drehmomentmesswertübertragung sowie die analogen Ausgänge bezüglich Drehmomentmessung
	aktiviert. Tarierung wird sofort aktiv)
OUTP:TARE:STAT?	0

4503B_002-736d-05.16

12.6.8 Drehwinkelausgang tarieren (TRAC:ANG)

TRAC:ANG:CLR

Die digitale Drehwinkelmesswertübertragung sowie die physikalischen Ausgänge der Stecker bezüglich Drehwinkelmessung können mit dem Kommando TRAC:ANG:CLR gleichzeitig auf den Ausgangsnullpunkt tariert werden.

12.6.9 Automatisches Tarieren von Drehwinkel (SYST:SPE:TURN)

<N> = 0 ... 32768

SYST:SPE:TURN<N> SYST:SPE:TURN?

Die digitale Drehwinkelmesswertübertragung sowie die physikalischen Ausgänge bezüglich Drehwinkelmessung können mit dem Kommando **SYST:SPE:TURN<N>** nach N Umdrehungen automatisch tariert werden. Bei **SYST:SPE:TURN1**0 wird der Drehwinkel nach 10 Umdrehungen bzw. 3600 ° tariert. Soll keine automatische Tarierung erfolgen, so ist N mit 0 (Null) zu definieren. Die gegenwärtige Einstellung lässt sich per **SYST:SPE:TURN?** ermitteln.

12.6.10 Anzahl der Ausgangsimpulse (OUTP:SPE:IMP)

<N> = 1 ... 8192

OUTP:SPE:IMP<N> OUTP:SPE:IMP?

Die Anzahl der Ausgangsimpulse an den physikalischen Ausgänge der Stecker kann bezüglich der Drehwinkelmessung mit dem Kommando **OUTP:SPE:IMP<N>** eingestellt werden. Bei **OUTP:SPE:IMP1024** werden pro Umdrehung 1024 Ausgangsimpulse generiert.

12.6.11 Messwerte synchronisieren (INP:SYNC)

INP:SYNC:ON INP:SYNC:OFF INP:SYNC:STAT?

Das zeitliche Synchronisieren von Drehmoment, Drehzahl und Drehwinkel auf der digitalen Schnittstelle kann mit dem Kommando **INP:SYNC:ON I OFF** aktiviert bzw. deaktiviert werden. Per **INP:SYNC:STAT?** lässt sich der Synchronisationsstatus ermitteln.

Bei Aktivierung der Drehmoment/Drehwinkel/Drehzahl-Synchronisation wir dem Tiefpassfilter für Dig. Drehzahl die gegenwärtig Tiefpassfiltereinstellung von Dig. Drehmoment zugewiesen.

12.6.12 Drehwinkelmessung Absolut/Relativ (SYST:SPE:MODE)

SYST:SPE:MODE:ABS SYST:SPE:MODE:REL SYST:SPE:MODE:STAT?

Die digitale Drehwinkelmesswertübertragung sowie die physikalischen Ausgänge der Stecker bezüglich Drehwinkelmessung können mit dem Kommando SYST:SPE:MODE:ABS absolut als bzw. per SYST:SPE:MODE:REL als relativ messend eingestellt werden.

Ist der Modus auf ABS (absolut) eingestellt, so ist nach dem der Sensor betriebsbereit ist (LED dauergrün) eine Referenzfahrt notwendig. Hierzu muss der Rotor um mindestens 360° gedreht werden, bevor eine Drehwinkelinformation ausgegeben wird. Ist der Modus auf REL (relativ) eingestellt, wird nach dem der Sensor betriebsbereit ist die Drehwinkelinformation unmittelbar ausgegeben.

Sekundärer Ausgang (12-pol. Einbaustecker) 12.7

12.7.1 Konfiguration (OUTP:SEC:CONF)

OUTP:SEC:CONF:DEF OUTP:SEC:CONF:USER OUTP:SEC:CONF?

Mit diesem Kommando wird definiert, ob für den sekundären Ausgang Standardeinstellungen oder benutzerdefinierte Einstellungen gültig sein sollen.

OUTP:SEC:CONF:DEF Mit werden für alle definierbaren Parameter des sekundären Ausgangs Standardwerte vorgesehen (Einstellungen ab Werk).

Sollen Parameter des sekundären Ausgangs verändert werden, so muss zuvor das Kommando OUTP:SEC:CONF:USER ausgeführt werden. Nun sind Filtereinstellungen, Skalierbereiche etc. vom Anwender definierbar.

OUTP:SEC:CONF? Durch wird ermittelt, welche Konfiguration gegenwärtig aktiv ist. Die Antwort "DEF" deutet auf die Standardeinstellungen hin, die Antwort "USER" auf benutzerdefinierte Einstellungen.

Syntaxbeispiele:

OUTP:SEC:CONF:DEF (Standardeinstellungen) 0

OUTP:SEC:CONF?

OUTP:SEC:CONF:USER

(Benutzerdefinierte Einstellungen)

OUTP:SEC:CONF? USER

DEF

Ω

12.7.2 Quelle (OUTP:SEC:SOUR)

OUTP:SEC:SOUR:TORQ OUTP:SEC:SOUR:SPE OUTP:SEC:SOUR?

Der sekundäre Ausgang kann einer Messgrösse als Quelle zugeordnet werden.

Mit **OUTP:SEC:SOUR:TORQ** folgt der sekundäre Ausgang der Messgrösse Drehmoment. Soll der sekundäre Ausgang auf die Drehzahl zugeordnet werden, so ist das Kommando **OUTP:SEC:SOUR:SPE** auszuführen.

Durch **OUTP:SEC:SOUR?** wird ermittelt, welcher Messgrösse der sekundäre Ausgang zugeordnet ist. Die Antwort "**TORQ**" repräsentiert das Drehmoment, die Antwort "**SPE**" die Messgrösse Drehzahl.

(Quelle Drehzahl)

Syntaxbeispiele:

OUTP:SEC:SOUR:TORQ (Quelle Drehmoment) 0 OUTP:SEC:SOUR? TORQ

OUTP:SEC:SOUR:SPE 0 OUTP:SEC:SOUR? SPE

12.7.3 Ausgangssignalart (OUTP:SEC:ROUT)

OUTP:SEC:ROUT:VOLT OUTP:SEC:ROUT:FREQ OUTP:SEC:ROUT?

Der sekundäre Ausgang kann mit dem Kommando **OUTP:SEC:ROUT:VOLT** als Spannungsausgang definiert werden.

Ebenso ist es möglich, den sekundären Ausgang alternativ als Frequenzausgang umzuschalten, dies geschieht mit dem Kommando **OUTP:SEC:ROUT:FREQ**.

Durch das Kommando **OUTP:SEC:ROUT**? wird ermittelt, welche Ausgangssignalart am sekundären Ausgang vorliegt. Ist der Ausgang als Spannungsausgang definiert, so antwortet das 4503B... mit "**VOLT**". Liegt die Einstellung als Frequenzausgang vor, so wird mit "**FREQ**" geantwortet.

Syntaxbeispiele:

OUTP:SEC:ROUT:VOLT 0 (Ausgangssignalart Spannungsausgang) OUTP:SEC:ROUT: VOLT OUTP:SEC:ROUT:FREQ 0 (Ausgangssignalart Frequenzausgang) OUTP:SEC:ROUT? FREQ

12.7.4 Skalierungsbereiche (OUTP:SEC[:EXT]:SCAL)

OUTP:SEC[:EXT]:SCAL<percentage> OUTP:SEC[:EXT]:SCAL?

Für den sekundären Ausgang können die verfügbaren Skalierungsbereiche unabhängig definiert werden. Dies geschieht durch einen prozentualen Wert des Nennwerts der zugeordneten Messgrösse.

Durch **OUTP:SEC:SCAL<percentage>** wird der 1. Skalierungsbereich in Prozent definiert.

Mit **OUTP:SEC:SCAL?** kann der prozentuale Faktor des 1. Skalierungsbereichs ermittelt werden.

Durch die Verwendung des Kommandofragments **EXT** wird in allen Fällen der 2. Skalierungsbereich angesprochen.

<percentage> = -10.0 ... 100.0

Syntaxbeispiele:

OUTP:SEC:SCAL100 0 OUTP:SEC:SCAL? 100	(1. Skalierungsbereich: 100 % des Nennwerts der zugeordneten Messgrösse)
OUTP:SEC:EXT:SCAL10 0	(2. Skalierungsbereich: 10 % des Nennwerts der zugeordneten Messgrösse)
OUTP:SEC:EXT:SCAL?	

12.7.5 Tiefpassfilter (OUTP:SEC[:EXT]:FILT)

OUTP:SEC[:EXT]:FILT:FREQ<cutOffFreq> OUTP:SEC[:EXT]:FILT:FREQ?

Für den sekundären Ausgang können für den 1. und 2. Skalierbereich jeweils ein Tiefpassfilterwert zweiter Ordnung eingestellt werden. Dieser lässt sich für den 1. Skalierbereich mit **OUTP:SEC:FILT:FREQ<cutOffFreq>** parametrieren.

Durch die Verwendung des Kommandofragments **EXT** wird in allen Fällen der 2. Skalierungsbereich angesprochen.

<cutOffFreq> =

0.1	0,1	Hz
0.2	0,2	Hz
0.5	0,5	Hz
1	1	Hz
2	2	Hz
5	5	Hz
10	10	Hz
20	20	Hz
50	50	Hz
60	60	Hz
100	100	Hz
120	120	Hz
200	200	Hz
500	500	Hz
1000	1	kHz
2000	2	kHz
5000	5	kHz
10000	10	kHz

Syntaxbeispiele:

OUTP:SEC:FILT:FREQ1000 0 OUTP:SEC:FILT:FREQ? 1000	(Filterfrequenz 1 kHz im 1. Skalierbereich)
OUTP:SEC:EXT:FILT:FREQ100 0 OUTP:SEC:EXT:FILT:FREQ? 100	(Filterfrequenz 100 Hz im 2. Skalierbereich)

12.7.6 Tarierung (OUTP:SEC:TARE)

OUTP:SEC:TARE<voltage/freq> OUTP:SEC:TARE? OUTP:SEC:TARE:AUTO OUTP:SEC:TARE:ON OUTP:SEC:TARE:OFF OUTP:SEC:TARE:STAT?

Der sekundäre Ausgang kann durch das Kommando **OUTP:SEC:TARE:AUTO** auf den Ausgangsnullpunkt tariert werden.

Alternativ ist die Tarierung auf einen bestimmten Frequenzwert in kHz möglich, dies geschieht mit OUTP:SEC:TARE<freq>.

Durch OUTP:SEC:TARE? wird ermittelt, auf welchen Wert der sekundäre Ausgang tariert ist.

Mit OUTP:SEC:TARE:ON wird die Tarierung aktiviert und mit OUTP:SEC:TARE:OFF deaktiviert.

Die Aktivität der Tarierung lässt sich mit dem Kommando OUTP:SEC:TARE:STAT? ermitteln. Die Antwort "ON" deutet auf die aktive Tarierung hin. Bei ausgeschalteter Tarierung antwortet der 4503B... mit "OFF".

-5.0 ... 5.0 <voltage/freq> = (Spannungsausgang) 1.0 ... 250.0 (Frequenzausgang)

Syntaxbeispiele:

OUTP:SEC:TARE:AUTO 0	(Tarierung auf 0 V bzw. Ausgangsnullpunkt, Tarierung wird sofort aktiv)
OUTP:SEC:TARE? 100	(Antwort mit gegenwärtig definierten Ausgangsnull- punkt z.B. bei aktivem sekundären Frequenzausgang)
OUTP:SEC:TARE:STAT? ON	
OUTP:SEC:TARE240 0	(Tarierung auf 240 kHz z.B. bei aktivem sekundären Fre- quenzausgang, Tarierung wird sofort aktiv)
OUTP:SEC:TARE? 240	

12.7.7 Ausgangsspannungshub (OUTP:SEC:VOLT:MAGN)

OUTP:SEC:VOLT:MAGN<voltage> OUTP:SEC:VOLT:MAGN?

Mit **OUTP:SEC:VOLT:MAGN<voltage>** kann der Spannungshub in Abhängigkeit des Nennwerts der zugeordneten Messgrösse (z.B. Nenndrehmoment, Nenndrehzahl) des sekundären Spannungsausgangs in V definiert werden.

Durch **OUTP:SEC:VOLT:MAGN?** wird der Spannungshub ermittelt.

<**voltage> =** -10.0 ... 10.0

Syntaxbeispiele:

OUTP:SEC:VOLT:MAGN8 0 (Spannungshub auf 8V bei Nennwert der zugehörigen Messgrösse)

OUTP:SEC:VOLT:MAGN? 8

12.7.8 Ausgangsspannungshub bei Kontrolle (OUTP:SEC:VOLT:CONT:MAGN)

OUTP:SEC:VOLT:CONT:MAGN<voltage> OUTP:SEC:VOLT:CONT:MAGN?

Mit **OUTP:SEC:VOLT:CONT:MAGN<voltage>** kann der Spannungshub bei aktiver Kontrolle des sekundären Spannungsausgangs in V definiert werden.

Durch **OUTP:SEC:VOLT:CONT:MAGN?** wird der Spannungshub bei aktiver Kontrolle ermittelt.

<**voltage> =** -10.0 ... 10.0

Syntaxbeispiele:

OUTP:SEC:VOLT:CONT:MAGN5(Spannungshub auf 5 V0bei aktiver Kontrolle)

OUTP:SEC:VOLT:MAGN? 5

12.7.9 Ausgangsnullpunkt Frequenzausgang (OUTP:SEC:FREQ:ZERO)

OUTP:SEC:FREQ:ZERO<freq> OUTP:SEC:FREQ:ZERO?

Mit **OUTP:SEC:FREQ:ZERO<freq>** kann der Ausgangsnullpunkt des sekundären Frequenzausgangs in kHz definiert werden.

Durch **OUTP:SEC:FREQ:ZERO?** wird der Ausgangsnullpunkt in kHz ermittelt.

<freq> = 1.0 ... 250.0

Syntaxbeispiele:

OUTP:SEC:FREQ:ZERO100 0 (Ausgangsnullpunkt auf 100 kHz)

OUTP:SEC:FREQ:ZERO? 100

12.7.10 Ausgangsfrequenzhub (OUTP:SEC:FREQ:MAGN)

OUTP:SEC:FREQ:MAGN<freq> OUTP:SEC:FREQ:MAGN?

Mit **OUTP:SEC:FREQ:MAGN<freq>** kann der Ausgangsfrequenzhub in Abhängigkeit des Nenndrehmoments des sekundären Frequenzausgangs in kHz definiert werden.

Durch **OUTP:SEC:FREQ:MAGN?** wird der Ausgangsfrequenzhub in kHz ermittelt.

<freq> = -150.0 ... 150.0

Syntaxbeispiele:

OUTP:SEC:FREQ:MAGN40 0 (Ausgangsfrequenzhub auf 40 kHz bei Nenndrehmoment)

OUTP:SEC:FREQ:MAGN? 40

12.7.11 Ausgangsfrequenzhub bei Kontrolle (OUTP:SEC:FREQ:CONT:MAGN)

OUTP:SEC:FREQ:CONT:MAGN<freq> OUTP:SEC:FREQ:CONT:MAGN?

Mit **OUTP:SEC:FREQ:CONT:MAGN<freq>** kann der Ausgangsfrequenzhub bei aktiver Kontrolle des sekundären Frequenzausgangs in kHz definiert werden.

Durch **OUTP:SEC:FREQ:CONT:MAGN?** wird der Ausgangsfrequenzhub bei aktiver Kontrolle in kHz ermittelt.

<freq> = -150.0 ... 150.0

Syntaxbeispiele:

OUTP:SEC:FREQ:CONT:MAGN40 (Ausgangsfrequenzhub 0 auf 40 kHz bei aktiver Kontrolle) OUTP:SEC:FREQ:MAGN? 40

12.7.12 Ausgangsamplitude (OUTP:FREQ:AMPL)

OUTP:FREQ:AMPL<voltage> OUTP:FREQ:AMPL?

Die Ausgangsamplitude des sekundären Frequenzausgangs wird mit **OUTP:FREQ:AMPL<voltage>** in V definiert.

Durch **OUTP:FREQ:AMPL?** erfolgt die Ermittlung der Ausgangsamplitude in V.

< voltage > = 5|24

Ausgangsamplute am primären Ausgang

Die Ausgangsamplitude ist beim primären und sekundären Frequenzausgang der selbe Wert.

Syntaxbeispiele:

OUTP:FREQ:AMPL5 0

(Ausgangsamplitude des primären und sekundären Frequenzausgangs auf 5 V)

OUTP:FREQ:AMPL? 5

12.7.13 Digitaler Kontrolleingang (INP:SEC:CONT)

INP:SEC:CONT:STAT?

Der digitale Eingangszustand der Kontroll-Leitung am sekundären Ausgangsstecker (12 pol.) kann mit dem Kommando **INP:SEC:CONT:STAT?** ermittelt werden.

Ist die Kontrolle an diesem Eingang ausgelöst, so antwortet der Typ 4503B... mit dem Wert "**1**". Ist keine Kontrolle an diesem Eingang gegenwärtig aktiviert, so wird mit dem Wert "**0**" geantwortet.

Syntaxbeispiele:

INP:SEC:CONT:STAT?

(die Kontrolle ist über den dig. Eingang des Steckers 12 pol. aktiviert worden)

12.8 Peripherer Ausgang (7-pol. Einbaustecker)

12.8.1 Digitaler Kontrolleingang (INP:PRI:FREQ:CONT)

INP:PRI:FREQ:CONT:STAT?

Der digitale Eingangszustand der Kontroll-Leitung am peripheren Ausgangsstecker (7-pol.) kann mit dem Kommando INP:PRI:FREQ:CONT:STAT? ermittelt werden.

Ist die Kontrolle an diesem Eingang ausgelöst, so antwortet das 4503B... mit dem Wert "**1**". Ist keine Kontrolle an diesem Eingang gegenwärtig aktiviert, so wird mit dem Wert "**0**" geantwortet.

Syntaxbeispiele:

INP:PRI:FREQ:CONT:STAT?

(die Kontrolle ist über den dig. Eingang des Steckers 7pol. aktiviert worden)

12.8.2 Digitale Skalierungsumschaltung (INP:RANG)

INP:RANG:STAT?

Der digitale Eingangszustand der Skalierungsumschalt-Leitung am peripheren Ausgangsstecker kann mit dem Kommando **INP:RANG:STAT?** ermittelt werden.

Ist die Skalierungsumschaltung an diesem Eingang ausgelöst (2. Skalierungsbereich), so antwortet das 4503B... mit dem Wert "**1**". Ist keine Skalierungsumschaltung an diesem Eingang gegenwärtig aktiviert (1. Skalierungsbereich), so wird mit dem Wert "**0**" geantwortet.

Syntaxbeispiele:

INP:RANG:STAT?

(die Skalierungsumschaltung ist über den dig. Eingang des Steckers aktiviert worden: 2. Skalierungsbereich)

12.8.3 Digitale Skalierungsquittierung (OUTP:RANG:ACKN)

OUTP:RANG:ACKN:STAT?

Der digitale Ausgangszustand der Skalierungsquittier-Leitung am peripheren Ausgangsstecker kann mit dem Kommando **OUTP:RANG:ACKN:STAT?** ermittelt werden.

Ist die Skalierungsquittier-Leitung ausgelöst (2. Skalierungsbereich), so antwortet der Typ 4503B... mit dem Wert "**1**". Ist die Skalierungsquittier-Leitung gegenwärtig deaktiviert (1. Skalierungsbereich), so wird mit dem Wert "**0**" geantwortet.

Syntaxbeispiele:

OUTP:RANG:ACKN:STAT? 1 (die Skalierungsquittier-Leitung ist am Stecker aktiv: 2. Skalierungsbereich)

12.9 Tariertaste und LED

12.9.1 Zustand der Tariertaste (INP:TARB)

INP:TARB:STAT?

Der digitale Zustand der Tariertaste kann mit dem Kommando **INP:TARB:STAT?** ermittelt werden.

Ist die Taste gedrückt, so antwortet der Typ 4503B... mit "1". Bei ungedrückter Taste wird mit dem Wert "0" geantwortet.

Syntaxbeispiele:

INP:TARB:STAT?

1

(die Tar

(die Tariertaste ist gedrückt)

INP:TARB:STAT? 0 (die Tariertaste ist nicht gedrückt)

12.9.2 Zustand der LED (OUTP:LED)

OUTP:LED:RD:STAT? OUTP:LED:GN:STAT?

Der Anzeigestatus der Zweifarben-LED kann mit folgenden Kommandos ermittelt werden:

	OUTP:LED:RD:STAT?	OUTP:LED:GN:STAT?	Zustand
	0	0	aus
ort	0	1	grün
tý	1	0	rot
An	1	1	orange

Syntaxbeispiele:

1

OUTP:LED:RD:STAT? 0 OUTP:LED:GN:STAT? (roter Anteil ist aus)

(grüner Anteil ist ein, also leuchtet die LED in der Gesamtheit grün)

12.10 Speicherbereich

12.10.1 Einstellungen laden und speichern (MEM:[LOAD | SAVE])

MEM:LOAD MEM:SAVE

Die benutzerdefinierten Einstellungen können in der Drehmoment-Auswerteeinheit Typ 4503B... nicht flüchtig gespeichert werden. Dies wird mit dem Kommando **MEM:SAVE** durchgeführt.

Die Einstellungen werden bei erneutem Einschalten vom Typ 4503B... automatisch geladen.

Sollen bereits gespeicherten Einstellungen manuell geladen werden (um z.B. veränderte Parameter durch gespeicherte Werte wiederherzustellen), so kann dies mit dem Kommando **MEM:LOAD** bewerkstelligt werden.

Speichern von Einstellungen

Beim Speichern mit MEM:SAVE werden die zuvor gespeicherten Einstellungen überschrieben und können nicht mehr wiederhergestellt werden!

Die Werkseinstellungen nach Auslieferung vom Typ 4503B... bleiben aber erhalten und können nicht vom Anwender überschrieben werden.

Syntaxbeispiele:

MEM:SAVE 0 MEM:LOAD

0

(benutzerdefinierte Einstellungen speichern)

(benutzerdefinierte Einstellungen laden)

12.10.2 Digitales Datenblatt

Im Speicherbereich des Typ 4503B... sind digitale Daten gespeichert, die mit folgenden Kommandos ermittelt werden können:

N∙m

С

С

Typenbezeichnung (Typ)

Nenndrehmoment in N·m

Maximale Drehzahl in Upm

Drehmomenthub bei Kontrolle in

Minimale Einsatztemperatur in °

Maximale Einsatztemperatur in °

Kalibrierschlüssel Auswerteeinheit

Seriennummer (SN)

Genauigkeitsklasse

Herstellungsjahr

Firmware-Version

Kalibrierdatum

Daten bezüglich des Drehmoment-Messrotors (Rotor)

MEM:TYPE?	
MEM:SER?	
MEM:RANG?	
MEM:CONT:MAGN?	

MEM:SPE:MAX? MEM:LINE? MEM:TMIN?

MEM:TMAX?

MEM:MDAT? MEM:CDAT? IDN:VER? MEM:CAL?

Syntaxbeispiele:

4503B
103889
1000.0
899.65
20000
0.05
10
60
2016
16.02.2015
4503BN1
115987
16.02.2011
4503B
V1.10

13. Wartung

- Drehmomentsensoren der Typenreihe 4503B... sind nahezu wartungsfrei
- Erneuerung der Lager kann nur im Werk erfolgen
- Präzisionsanwendungen: Drehmomentsensor jährlich neu kalibrieren (Kalibrierung im Werk oder mit entsprechender Kalibriervorrichtung)
- Kabelstecker monatlich auf festen Sitz kontrollieren
- Kabel monatlich auf Beschädigung überprüfen

14. Instandsetzen der Messwelle

Welle schwergängig

Lager defekt

- durch Torsions- oder Biegeschwingungen
- durch zu hohe Axial- oder Radiallasten
- durch altes oder verschmutztes Lager
- Welle durch zu hohe Querlast verbogen

Abhilfe:

Einsenden ans Werk

- Nullpunktverschiebung kleiner als etwa 2 % Nullpunkt neu abgleichen
- Nullpunktverschiebung zwischen etwa 2 % und etwa 5 %: Drehmomentsensor wurde überlastet Nullpunkt kann einmalig am Messverstärker neu abgeglichen werden
- Nullpunktverschiebung grösser als etwa 5 % oder mehrmals zwischen 2 % und 5 % Drehmomentsensor ins Werk zur Überprüfung
- Sensor hat Hysterese zwischen Links- und Rechtsmoment.
 Sensor wurde überlastet.
 Neue Torsionswelle ist erforderlich. Sensor zurück ins Werk zur Reparatur

15. Technische Daten

Mechanische Grunddaten

Messbereich	N⋅m	±0,2 5 000
Nenndrehmoment Mnom	N∙m	0,2 5 000
Mechanische Überlastbarkeit		
Grenzdrehmoment		1,5 x M _{nom}
Wechseldrehmoment		$0,7 \times M_{nom}$
Bruchdrehmoment		$4 \times M_{nom}$
Eingebaute Drehzahlsonde	Impulse/	
Drehzahlmessung	Umdr.	1x60
Drehzahl-/Winkelmessung	(optional)	2x 1 8 192
mit Referenzimpuls		90° versetzt, TTL
(Version "H"und"W")		+ Z-Impuls
Nenndrehzahl		nach Messbereich
		und Ausführung
		(siehe Angaben)
Wuchtgüte Q		
für Ausführung "L" und "W"		6,3
für Ausführung "H"		2,5
Gehäusematerial		Al, eloxiert
Schutzart		IP40

Allgemeine elektrische Daten

Grenzfrequenz –3 dB für	kHz	10
Spannungsausgang		
Ausgangssignal	VDC	±0 5/10
bei M _{nom} (Nennkennwert)	kHz	100 ±40
Lastwiderstand	kΩ	>10
Betriebstemperaturbereich	°C	10 60
(Nenntemperaturbereich)		
Gebrauchstemperaturbereich	°C	0 70
Lagertemperaturbereich	°C	-25 80
100 % Kontrolleingang	VDC	"Ein" 3,5 30
		"Aus" 0 2
Speisespannung	VDC	11 30
Leistungsaufnahme	W	<5
Elektrischer Anschluss		12-pol./7-pol.
		Einbaustecker

Elektrische Messdaten – Standard Messbereich 1:1

Nenndrehmoment	N⋅m	0,2 5 000
Genauigkeitsklasse		0,05
Linearitätsabweichung	% FSO	<±0,05
einschliesslich Hysterese		
Temperatureinfluss auf den Nullpunkt	% FSO/10 K	<±0,05
Temperatureinfluss auf den Kennwert	% FSO/10 K	<±0,05
Drehmoment-Kontrollsignal	% FSO	100 ±0,2
für Spannung-/Frequenzausgang		

Elektrische Messdaten – Erweiterter Messbereich 1:x

Nenndrehmoment	N⋅m	0,05	0,02
		1 000	
Genauigkeitsklasse		0,1	0,2
Linearitätsabweichung	% FSO	<±0,1	<±0,2
einschliesslich Hysterese			
Temperatureinfluss auf den Nullpunkt	% FSO/10 K	<±0,1	<±0,2
Temperatureinfluss auf den Kennwert	% FSO/10 K	<±0,1	<±0,2
Drehmoment-Kontrollsignal	% FSO	100 ±0,3	
für Spannungs-/ Frequenzausgang			

Drehzahl-/ Drehwinkel Messsystem

Baugrösse		1 5
Messsystem		Magnetoresistiv
Ausgangssignal	V	5 TTL
Impulse pro Umdrehung		1 8 192
Impulstoleranz	0	≤0,03
Mindestdrehzahl für		
ausreichende Impulsstabilität	min ⁻¹	>0
Maximal zulässige		
Ausgangsfrequenz	kHz	500
Gruppenlaufzeit	μs	<150
Lastwiderstand	kΩ	≥2

Referenzimpuls-Messsystem (0-Index)

Messsystem		Magnetoresistiv
Ausgangssignal	V	5 TTL
Impulse pro Umdrehung		1
Impulstoleranz	0	≤0,03
Mindestdrehzahl für		
ausreichende Impulsstabilität	min ⁻¹	>0
Gruppenlaufzeit	μs	<150
Lastwiderstand	kΩ	≥2

16. Abmessungen

 $(\widehat{1})$ = Option Gehäuseunterbau "GU" M = Messseite

Abmessungen in mm

Baugrösse	1		2		3	4	5	
Nenndrehmoment N·m	0,2	0,5	1	2/5	10/20	50/100	200/500/ 1 000	2 000/5 000
L	159	159	159	163	167	180	267	418
L1	16	16	16	18	20	28	61	120
L2	16	16	16	18	20	28	61	120
øD	58	58	58	58	58	78	98	148
ød g6	9	9	9	10	12	22	42	70
A	22,5	22,5	22,5	24,5	26,5	43,5	90	259,5
В	18	18	18	18	22	34	65	124,5
С		1	8	18		18	15	20
E		3	0	30		30	32	47
G	122		122		113	137	169	
Н	54		54		64	78	96,5	
ТК	46		46		64	87	132	
M		N	5	N	15	M6	M6	M8
Т		61	ief	6	tief	12 tief	12 tief	16 tief

Option: Wellenende mit Passfedernuten. Passfedernut (2x180°) nach DIN 6885, Bl. 1

16.1 Abmessungen für Gehäuseunterbau (GU)

Anschlussmasse für Gehäuseun- terbau	Baugrösse 1 und 2
N⋅m	Gewinde
0,2	
0,5	
1	
2	M5x6 (4x)
5	
10	
20	

Anschlussmasse für Gehäuseun- terbau	Baugrösse 3
N∙m	Gewinde
50 100	M8x10 (2x)

•		¢	M8x10
		G	
	93.5 164	50.5	-

Anschlussmasse für Gehäuseun- terbau	Baugrösse 4
N-m	Gewinde
200	
500	M8x10 (4x)
1 000	

Anschlussmasse für Gehäuseun- terbau	Baugrösse 5
N⋅m	Gewinde
2 000	M8v10 (4v)
5 000	MOX 10 (4X)

Maccharoich	Ausführung	Ausführung
Nessbereich	"L" (low speed)	"H"(high speed)
IN•111	1/min	1/min
0,2	20 000	50 000
0,5	20 000	50 000
1	20 000	50 000
2	20 000	50 000
5	20 000	50 000
10	20 000	50 000
20	20 000	50 000
50	12 000	30 000
100	12 000	30 000
200	8 000	20 000
500	8 000	20 000
1 000	8 000	20 000
2 000	5 000	10 000
5 000	5 000	10 000

16.2 Messbereiche und zulässige Höchstdrehzahl

16.3 Drehsteifigkeit und Massenträgheit

Messbereich N∙m	Drehsteifheit N∙m/rad	Massen kg Messseite	trägheit cm² Antriebsseite
0,2	101	0,021	0,36
0,5	101	0,021	0,36
1	213	0,023	0,36
2	480	0,024	0,36
5	1 220	0,024	0,36
10	2 757	0,034	0,37
20	6 095	0,034	0,37
50	13 020	0,8	0,49
100	16 860	0,85	0,5
200	81 860	6,57	6,08
500	119 300	6,64	6,51
1 000	148 000	6,82	6,69
2 000	603 300	58,9	61,2
5 000	725 250	60,31	62,9

16.4 Grenzwerte für dynamische Belastung

				Messseite		Antriebsseite	
Baugrösse	Messbereich N·m	Gewicht kg	Drehzahl 1/min	Querkraft N max.	Axialkraft N max.	Querkraft N max.	Axialkraft N max.
	0,2			1,6	50	120	80
1	0,5	1,4	20 000	3,3	50	120	80
	1			5	50	120	80
	2			10	80	120	80
2	5	1 /	20.000	28	80	120	80
2	10	1,4	20 000	30	80	120	80
	20			35	80	120	80
2	50	2.4	12,000	200	120	280	150
3	100	2,1	12 000	200	120	280	150
	200			450	200	700	250
4	500	5,8	8 000	450	200	700	250
	1 000			450	200	700	250
E	2 000	22	5 000	700	350	1 500	450
C	5 000	22	5 000	700	350	1 500	450

Ausführung "L/W" Messseite (low speed")

				Messseite		Antriebsseite	
Baugrösse	Messbereich N·m	Gewicht kg	Drehzahl 1/min	Querkraft N max.	Axialkraft N max.	Querkraft N max.	Axialkraft N max.
	0,2			1,6	30	100	30
1	0,5	1,4	50 000	3,3	30	100	30
	1			5	30	100	30
	2			10	30	100	30
2	5	1 /	50,000	28	30	100	30
2	10	1,4	+ 50,000	30	30	100	30
	20			35	30	100	30
2	50	2.1	20.000	100	40	200	75
5	100	2,1	30 000	100	40	200	75
	200			250	100	400	170
4	500	5,8	20 000	250	100	400	170
	1 000			250	100	400	170
5	2 000	22	10,000	450	160	800	250
	5 000	22	10 000	450	160	800	250

Ausführung "H" Messseite (high speed")

17. Bestellschlüssel

Typ 4503B Messbereiche in N·m 0.2 0.2 0,5 0,5 001 1 2 002 5 005 10 010 20 020 50 050 100 100 200 200 500 500 1 000 1k0 2 000 2k0 5 000 5k0 Impulse pro Umdrehung Low speed 60 L High speed bis 2 x 8 192 + Z Н Low speed bis 2 x 8 192 + Z w Passfeder Ohne P0 Mit P1 Ausgangssignal Spannung ±5 VDC und 00 Frequenz 100 ±40 kHz Spannung ±10 VDC und Frequenz 100 ±40 kHz B1 Kalibrierung WKS 1 - Einbereich KA0 WKS 1 - Zweibereich 1:1 und/oder 1:10 KA1 WKS 1 - Zweibereich 1:1 und/oder 1:5 KA2 WA0 WKS 2 - Einbereich WKS 2 - Zweibereich 1:1 und/oder 1:10 WA1 WKS 2 - Zweibereich 1:1 und/oder 1:5 WA2 DK5 DAkkS 5 - Einbereich, 5 Messpunkte DAkkS 8 - Einbereich, 8 Messpunkte DK8 DAkkS 5 – Zweibereich, 5 Messpunkte D52 DAkkS 8 - Zweibereich, 8 Messpunkte D82

Begriffsdefinition Kalibrierung:

- WKS 1: Kalibrierung mit 5 Punkten Rechts, 3 Punkte Links
- WKS 2: Kalibrierung mit 5 Punkten Rechts wie Links und Wiederholungsreihe
- DAkkS: Kalibrierung nach DIN 51309

Unser Kalibrierservice DAkkS-K-17650-01 bietet rückführbare Kalibrierungen für Drehmomentsensoren aller Hersteller an.

Bestellbeispiel:

Typ 4503B050LP000KA0

Drehmomentsensor mit 1 Messbereich: Nenndrehmoment 50 N·m: 050, Ausführung L: max. Drehzahl 12 000 min⁻¹, Ohne Passfedernuten: P0, Standard-Ausgangssignal ±5 VDC und Frequenz 100 ±40 kHz: 00, Kalibrierung WKS1 Einbereich: KA0

18. Zubehör/Komponenten für Typ 4503B...

Mitgeliefertes Zubehör • USB-Kabel 55115378 Zubehör (optional) Typ/Art. Nr. • Gehäuseunterbau "GU", für Messbereiche 18030861 0,2 ... 20 N·m • Gehäuseunterbau "GU", für Messbereiche 18030862 50 ... 100 N·m • Gehäuseunterbau "GU", für Messbereiche 18030863 200 ... 1 000 N·m • Gehäuseunterbau "GU", für Messbereiche 18030864 2 000 ... 5 000 N·m • Kabeldose mit Lötöse 12-pol. 18008371 • Kabeldose mit Lötöse 7-pol. 18008363 • Anschlusskabel, 5 m, 12-pol. 18008935 • Anschlusskabel, 5 m, 12-pol. - freie Enden 18008943 • Anschlusskabel, 5 m, 7-pol. – freie Enden 18008996 • Anschlusskabel 2,5 m, 12-pol. – CoMo Torque 18008967 • Anschlusskabel 5 m, RS-232C 7-pol./D-Sub 9-pol. 18008994 • ControlMonitor CoMo Torque Auswertegerät für Drehmomentsensoren 4700B...

Kabel gemäss Datenblatt 000-615.

19. Index

Α

Abmossungon	71
Abiliessungen	1
Anschlusskabel	17
Anschlussplan Sensor Messbereichsumschaltung	16
Anschlussplan Standardsensor	15
ASCII-Identifikation	44
Aufbau Kalibriereinrichtung	27
Ausgabeformat definieren	37
Ausgangssignalart	56

В

Bestellschlüssel	.75
Blockschaltbild	9

D

Dehnungsmessstreifen	8
Digital per RS-232C oder USB	25
Digitalausgang	14
Digitales Datenblatt	67
DMS	8
Drehmomentausgänge tarieren	52, 53
Drehmomentmessungen	29
Drehmomentmesswerte mittels externer Trigger	rung
	34
Drehmomentmesswerte über RS-232-C-Komma	ando
	33
Drehsteifigkeit	73
Drehwinkelmessung Absolut/Relativ	54
Drehzahl-/ Drehwinkelerfassung	10

Ε

Einschaltvorgang	
elektrische Installation	20
Entsorgungshinweis	6
Ereignisstatusregister	45
ESR?	45

F

Fehlermeldungen39	Э
-------------------	---

G

galvanische Trennung	. 12
Grenzwerte	.74

Η

Höchstdrehzahl	. 73
HyperTerminal	. 40

I

Identifikation	44
Inbetriebnahme	24
INP:CONT	50
INP:FILT	55
INP:GAIN:MULT	49
INP:PRI:FREQ:CONT	63
INP:RANG	64
INP:TARB	65
Instandsetzung Messwelle	69

J

Justieren und Kalib	rieren20	6

Κ

Konfigurations-Kommandos	35
Kontrollsignal (INP:CONT)	50
Konventionen und Syntax	30

Μ

73
47
47
49
73
14
47
32
47
8
69
47

0

OUTP:FREQ:AMPL	62
OUTP:LED	
OUTP:RANG:ACKN	64
OUTP:SEC:CONF	
OUTP:SEC:FREQ:CONT:MAGN	62

OUTP:SEC:FREQ:MAGN	61
OUTP:SEC:FREQ:ZERO	61
OUTP:SEC:ROUT	56
OUTP:SEC:SOUR	56
OUTP:SEC:TARE	59
OUTP:SEC:VOLT:CONT:MAGN	60
OUTP:SEC:VOLT:MAGN	60
OUTP:SEC[:EXT]:FILT	58
OUTP:SEC[:EXT]:SCAL	57
OUTP:SPE:FILT	51
OUTP:TARE	52, 53, 54
OUTP:TORQ:FILT	50

Ρ

Dorinhoror	Aucaana	(Stockor	V 2)	6	0
renpherer	Ausgang	(SLECKEI	ΛZ)		5

Q

R

RS-232 Funktionsblock CONFiguration
RS-232 Funktionsblock FORMat
RS-232 Funktionsblock MEMory35
RS-232 Funktionsblock TRIGger
RS-232 Kommando CONF:TORQ
RS-232 Kommando MEAS:TORQ?33
RS-232 Kommando MEAS?33
RS-232 Kommando TRIG:MODE:MEAS
RS-232 Messgeschwindigkeiten32
RS-232 Messwert Konfiguration
RS-232 Reaktionszeiten32

S

Schnittstellen-Kommandos รดย	30 30
Sekundärer Ausgang	55
Skalierungsbereich umschalten (INP:GAIN:MUL	T).49
Skalierungsbereiche	57
Speicherbereich	66
Speisung	11
Spitzenwertspeicher löschen	48
Stecker X4	55
Steckerbelegung, Anschlussplan	13
Stromaufnahme bei unterschiedlicher	
Versorgungsspannung	11

т

Tarierung	25
Technische Daten	70
Tiefpassfilter	58
Tiefpassfilter dig. Drehmomentmesswerte	50
Tiefpassfilter Drehmoment	55
TRAC	48
Triggermodus festlegen	38
typische Eigenschaften	7

V

/erlegung des Messkabels1	9

W

Wichtige	Informationen		f	5
vvicininge	monnationen	 		-

Ζ

Zubehör	۲	76
---------	---	----