Betriebsanleitung

Drehmoment-Messflansch Typ 4510B...

Kompatibel mit Firmware-Version Stator: >V2.06 Rotor: >V1.9

CE

4510B_002-543d-01.14

Betriebsanleitung

Drehmoment-Messflansch Typ 4510B...

Kompatibel mit Firmware-Version Stator: >V2.06 Rotor: >V1.9

CE

4510B_002-543d-01.14

Vorwort

Dieses Handbuch bezieht sich auf den Drehmoment-Messflansch Typ 4510B....

Die Betriebsanleitung muss für künftige Verwendung aufbewahrt werden und bei Bedarf am Einsatzort verfügbar sein.

Die Angaben in diesem Handbuch können jederzeit ohne Vorankündigung geändert werden. Kistler behält sich das Recht vor, das Produkt im Sinne des technischen Fortschritts zu verbessern und zu ändern, ohne Verpflichtung, Personen und Organisationen aufgrund solcher Änderungen zu benachrichtigen.

Originalsprache dieser Betriebsanleitung: deutsch

 $\textcircled{\sc 0}2009$... 2014 Kistler Gruppe. Alle Rechte bleiben vorbehalten.

Inhaltsverzeichnis

1.	Einlei	itung	4
2.	Wich	tige Informationen	5
	2.1	Entsorgungshinweis zu Elektronikgeräten	5
3.	Anwe	endung und typische Eigenschaften	6
4.	Mess	systembeschreibung	7
	4.1	Mechanischer Aufbau	7
	4.2	Elektrischer Aufbau 4.2.1 Drehzahlmessung mit 60 Impulsen	7 9
5.	Elektr	rischer Anschluss des Drehmoment-Messflanschs	10
	5.1	Speisung 5.1.1 Stromaufnahme des Drehmoment-Messflansches bei unterschiedlicher	10
		Versorgungsspannung	10
	5.2	Prinzip der galvanischen Trennung im Drehmoment-Messflansch	11
	5.3 5.4	Steckerbelegung 12-pol. Einbaustecker A, Standard	12
	5.4	5.4.1 Moschoroicheumschaltung	12
		5.4.1 Messbereichsumschaltung	13
		5.4.2 Digitalausgalig selleli, Messwelt über KS-252C	1 <i>1</i>
		5.4.4 Anschlussplan des Einbausteckers A und B (standard)	15
6.	Ansch	hlusskabel	16
	6.1	Verlegung des Messkabels	17
	6.2	Hinweise für sichere elektrische Installation	18
7.	Mech	nanischer Einbau des Drehmoment-Messflansches	19
	7.1	Montagehinweise	20
		7.1.1 Wellentoleranz	20
		7.1.2 Ausrichten des Stators zum Rotor	20
		7.1.3 Montage- und Demontageanleitung für Schrumpfscheiben	21
	7.2	Montagevorschlag	23
		7.2.1 Verschraubung des Rotors, Befestigungsschrauben	23
8.	Elektr	rische und mechanische Inbetriebnahme	24
	8.1	Betriebsleuchtdiode	24
	8.2	Justieren und Kalibrieren des Drehmoment-Messflanschs	25
	8.3	Mechanische Kalibrierung	26
		8.3.1 Aufbau einer einfachen Kalibriereinrichtung	26
		8.3.2 Berechnungsbeispiel Hebelarmlänge	27
9.	Drehr	momentmessungen durchführen	28
	9.1	Einschaltvorgang des Drehmoment-Messflanschs	28
	9.2	Eigenschaften bei der Messbereichsumschaltung	28

10.	RS-232C-Kommunikation							
	10.1	Schnittstellenparameter	30					
		10.1.1 Konventionen und Syntax	30					
		10.1.2 Fehlermeldungen	32					
		10.1.3 Messgeschwindigkeiten, Reaktionszeiten	33					
		10.1.4 Drehmomentmesswerte über RS-232C-Kommando anfordern	34					
		10.1.5 Drehmomentmesswerte mittels externer Triggerung anfordern	35					
	10.2	Typischer Messablauf	36					
	10.3	Konfigurations-Kommandos	37					
		10.3.1 Messbereichsumschaltung	37					
		10.3.2 Kontrollsignal (Kalibriersignal) ein- oder ausschalten	38					
		10.3.3 Messwertabfrage – Konfiguration für das MEAS-Kommando	39					
		10.3.4 Ausgabeformat definieren	40					
		10.3.5 Triggermodus festlegen	41					
		10.3.6 Sensordaten ermitteln	42					
	10.4	Messkommandos	45					
		10.4.1 Drehmoment- und Temperaturmessgrösse übertragen	45					
11.	Wart	ung	47					
12.	Insta	ndsetzen der Messwelle	47					
13.	Tech	nische Daten	48					
	13 1	Mechanische Grunddaten	48					
	13.1	Allgemeine elektrische Daten	40 48					
	13.2	Flektrische Messdaten – Standard Messbereich 1.1						
	13.4	Elektrische Messdaten – erweiteter Messbereich 1:5, 1:10						
14.	Abm	essungen	50					
15.	Beste	ellschlüssel und Zubehör	52					
16.	Konf	ormitätserklärung	53					
17.	Index	<	54					

Total Seiten 55

1. Einleitung

Wir danken Ihnen, dass Sie sich für ein Kistler Qualitätsprodukt entschieden haben. Bitte lesen Sie diese Betriebsanleitung sorgfältig durch, damit Sie die vielseitigen Eigenschaften Ihres Produkts optimal nutzen können.

Kistler lehnt soweit gesetzlich zulässig jede Haftung ab, sofern dieser Betriebsanleitung zuwider gehandelt wird oder andere Produkte, als unter Zubehör aufgeführt, verwendet werden.

Kistler bietet eine breite Palette von messtechnischen Produkten und Gesamtlösungen:

- Piezoelektrische Sensoren f
 ür die Messung von Druck, Kraft, Moment, Dehnung, Beschleunigung, Schock und Vibration
- DMS-Sensorsysteme f
 ür die Messung von Kraft und Moment
- Piezoresistive Drucksensoren und Transmitter mit den zugehörigen Messverstärkern
- Zugehörige Messverstärker (Ladungsverstärker, piezoresistive Verstärker etc.), Anzeigegeräte und Ladungskalibratoren
- Elektronische Steuer-, Überwachungs- und Auswertegeräte sowie anwendungsspezifische Software für die Messtechnik
- Datenübertragungsmodule (Telemetrie)
- Elektromechanische NC-Fügemodule und Kraft-Weg Überwachung
- Prüfstandsysteme für Elektromotoren und Getriebe in Labor, Fertigung und Qualitätssicherung

Kistler konzipiert auch ganze Messanlagen für spezielle Einsatzzwecke, zum Beispiel in der Automobilindustrie, in der Kunststoffverarbeitung und in der Biomechanik.

Unser Gesamtkatalog vermittelt eine Übersicht unseres Angebotes. Zu praktisch allen Produkten sind detaillierte Datenblätter verfügbar.

Für alle speziellen Fragen, die nach dem Studium dieser Anleitung noch offen sind, steht Ihnen der weltweite Kistler-Kundendienst zur Verfügung, der Sie auch bei anwendungsspezifischen Problemen kompetent beraten wird.

2. Wichtige Informationen

2.1 Entsorgungshinweis zu Elektronikgeräten

Elektronik-Altgeräte dürfen nicht mit dem Haushalt-Kehricht entsorgt werden. Bitte geben Sie das ausgediente Gerät zur Entsorgung an die nächstgelegene Elektronik-Entsorgungsstelle zurück oder kontaktieren Sie Ihre Kistler-Verkaufsstelle.

3. Anwendung und typische Eigenschaften

- Drehmoment-Messflansch mit DMS-Messsystem
- Digitalisierte verschleissfreie Messsignalübertragung
- Messen von konstanten und veränderlichen Drehmomenten
- Drehmomentmessung auf der rotierenden Welle
- Optional als Zwei-Bereichsensor einsetzbar
- Einsatz im Labor, Fertigung und Qualitätskontrolle
- mit Drehzahlmessung
- 2-Farben-LED für Betriebszustand
- Galvanische Trennung zwischen Speisung und Drehmoment-Ausgangssignal

Bild 1: Drehmoment-Messflansch in der Standardversion Typ 4510B...

4. Messsystembeschreibung

4.1 Mechanischer Aufbau

Der Drehmoment-Messflansch besteht aus einem Stator mit Standfuss und den darin rotierenden Rotor.

Auf der Messwelle befindet sich eine Torsionsstrecke mit Dehnungsmessstreifen (DMS), eine Elektronik mit Signalverstärker und ein A/D-Wandler. Im Anschlusskasten des Grundkörpers ist die stationäre Elektronik zur Signalformung untergebracht. Der Stator bietet verschiedene Montagemöglichkeiten.

4.2 Elektrischer Aufbau

Die folgende schematische Darstellung zeigt das Funktionsprinzip einer digitalen Messwertübertragung.

Die Speisung der Elektronik erfolgt mit einer Gleichspannung im Bereich von 11 ... 30 V (± 25 %). Frei programmierbare Steuerungen (SPS) liefern eine Gleichspannung von 24 V, welche natürlich zur Speisung des Drehmoment-Messflansch herangezogen werden können.

Ein quarzgesteuerter Leistungsoszillator erzeugt den Systemtakt und speist die rotierende Elektronik über konzentrische Drehübertrager.

In der rotierenden Elektronik wird diese Wechselspannung gleichgerichtet und stabilisiert. Das Messsignal des Dehnmessstreifens wird verstärkt und durch einen schnellen seriellen A/D-Wandler digitalisiert. Die Modulation mit 1 MHz erlaubt eine Rückübertragung durch Luftspulen.

Bild 2: Schematisches Prinzipschaltbild des Drehmoment-Messflanschs Typ 4510B...

In der äusseren Elektronik wird das digitalisierte DMS-Signal bei der Übertragung wieder in ein analoges Signal von ± 10 V umgewandelt.

Optional besteht die Möglichkeit ein frequenzbasierendes Signal (100 kHz ±40 kHz) zu erzeugen. Ausserdem kann das Drehmomentmesssignal über die RS-232C-Schnittstelle übertragen werden.

Durch ein externes, digitales Kontrollsignal kann auf der Welle eine definierte Brückenverstimmung ausgelöst werden, die dem Nennmoment entspricht.

Mit der Messbereichsumschaltung wird die Verstärkung des DMS-Analogverstärkers der Rotorelektronik definiert.

4.2.1 Drehzahlmessung mit 60 Impulsen

Die Erfassung der Drehzahl ist bei diesem Drehmoment-Messflansch integriert:

 Dies wird durch ein Impulsrad mit 60 Impulsen erreicht. Hierbei werden Erhöhungen auf dem Rad mit Hilfe einer magnetischen Sonde detektiert. Dieses Drehzahlerfassungssystem ist standardmässig vorhanden

Bild 3: Elektrisches Prinzipschaltbild der Drehzahlmessung mit Impulsrad

5. Elektrischer Anschluss des Drehmoment-Messflanschs

5.1 Speisung

Zur Speisung des Drehmoment-Messflanschs Typ 4510B... ist eine Versorgungsspannung im Bereich von:

11 ... 30 VDC Gleichspannung

erforderlich. Die Gleichspannung wird am 12-poligen Einbaustecker am Pin F $(+U_B)$ und A (GND) zugeführt. Die Leistungsaufnahme beträgt ca. 2,5 W. Im Drehmoment-Messflansch erfolgt eine galvanische Trennung zwischen Speisung und Drehmomentausgang.

5.1.1 Stromaufnahme des Drehmoment-Messflansches bei unterschiedlicher Versorgungsspannung

Bild 4: Eingangsstrom in Funktion der Eingangsspannung

Bild 5: Mögliche Speisegeräte für den Drehmoment-Messflansch

5.2 Prinzip der galvanischen Trennung im Drehmoment-Messflansch

5.3 Steckerbelegung 12-pol. Einbaustecker A, Standard

	Funktion	PIN	N Beschreibung								
	Speisung	F	+U _R	11 30 VDC, Leistungsaufnahme <5 W							
	1 0	А	GND	Bezug für +U _B							
	Schirm	Μ		Im Sensor auf Gehäuse							
	Drehmomentausgang	С		Spannungsausgang B1	Frequen	z B2					
			UA	± 10 VDC bei $\pm M_{Nom}$ an >2 k Ω	F₄+	Frequenzsignal					
				10 VDC bei Kontrollsignalauslösung		5 V (TTL)					
F. F. G.				$R_{i,c} = 10 \Omega$, Ausgang kurzschlussfest							
/ // п. м. н\\ \ \						Bezug für					
		D	AGND	Bezug für U _A	AGND	Frequenzsignal					
	Drehzahlimpulse	Н	Spur A	Aktiv, TTL-Pegel							
		G		Nicht verwendet							
		J		Nicht verwendet							
	Eingang	K	Kontrolle	Aus: 0 2 VDC							
	100 % Kontrolle			Ein: 3,5 30 VDC							
				$R_{i,k} = 10 k\Omega$							
	RS-232C-Schnittstelle	В	TXD	Serielle Sendeleitung des Sensors							
	zum CoMo Torque	L	RXD	Serielle Empfangsleitung des Sensors							
	Digitale Masse	E	DGND	Bezug für Drehzahlimpulse, Kontrolle	ingang						
				und RS-232C-Schnittstelle							

5.4 Steckerbelegung 7-pol. Einbaustecker B, Standard

	Funktion	PIN	Beschreibu	ing
	Messbereichsumschaltung	1	Gain	Normal (1:1) mit 0 2 VDC
				Erweitert (1:5 / 1:10) mit 3,5 30 VDC
	-	2		Für firmeninterne Nutzung, nicht belegen!
	Digitale Masse	3	DGND	Bezug für RS-232C-Schnittstelle
\ \ 1●′●6////	Eingang 100 % Kontrolle	4	Kontrolle	Aus: 0 2 VDC
				Ein: 3,5 30 VDC
	RS-232C-Schnittstelle	5	TXD	Serielle Sendeleitung des Sensors
		6	RXD	Serielle Empfangsleitung des Sensors
		7	OGND	Bezug für Kontrolleingang

5.4.1 Messbereichsumschaltung

Voraussetzung:

- Option A1 (Messbereich 1:10) oder
- Option A2 (Messbereich 1:5, technische Daten wie 1:10)

Alle nachfolgenden Angaben gelten für den 1:10sowie für den 1:5-Messbereich.

Wird der Drehmoment-Messflansch ab Werk zusätzlich im Messbereich 1:10 kalibriert, so kann über PIN 1 und PIN 7 der geforderte Messbereich umgeschaltet werden.

Messbereich	logischer Spannungspegel	Zustand
1:1	PIN1 = 0	U _{PIN1,7} = 0 2 V
1:10	PIN1 = 1	U _{PIN1,7} = 3,5 30 V

Für den jeweiligen Messbereich muss der logische Zustand an PIN 1 permanent erhalten bleiben. Optional kann der Messbereich über die RS-232C-Schnittstelle umgeschaltet werden.

5.4.2 Digitalausgang seriell, Messwert über RS-232C

Voraussetzung: Option D (RS-232C-Schnittstelle)

Bei dieser Option können drehmoment-äquivalente Messwerte über die RS-232C-Schnittstelle übertragen werden. Weitere Hinweise findet der interessierte Leser im Kapitel "RS-232C-Kommunikation".

5.4.3 Anschlussplan Standardsensor

Antrieben einleiten.

5.4.4 Anschlussplan des Einbausteckers A und B (standard)

Bild 8: Anschlussplan mit Messbereichsumschaltung vom Drehmoment-Messflansch Typ 4510B... /RS-232C-Schnittstelle an die Versorgungsund Auswerteeinheiten

6. Anschlusskabel

Technische Daten	Typ KSM072030-5, MatNr: 18008935			
Anschluss		12-pol. neg. – 12-pol. pos.		
Länge	m	5 (andere Länge auf Anfrage)		
Durchmesser	mm	6		
Schutzart nach IEC/EN 60529		IP40		

	UA	Messsignal +/- 10 VDC		violett	0
	AGND	Bezug für Messsignal UA		schwarz	
	DGND	Bezug für Drehzahl, Winkel, RS-232C Kontrolle	i i	braun	E
	UB	Versorgung 11 30 VDC, ca. 5W		blau	
	Spur B	Winkelausgang nacheilend zur Spur A (Option)		rosa	G
	Spur A	Drehzahlausgang, Winkel voreilend (Option)		weiss/grün	н
	Spur Z	(nicht verwenden)		grün	
	Kontrolle	Eingang, Aktivierung: 3,5 30 VDC		weiss	ĸ
	RXD	RS-232C, Empfangsleitung		gelb	
	Schirm			grau	M
Gehäuse				e	

Technische Daten	Typ KSM124970-5, MatNr. 18008943
Anschluss	12-pol. neg. – offen
Länge m	5 (andere Länge auf Anfrage)
Durchmesser mm	6
Schutzart nach IEC/EN 60529	IP40

-	Standardlänge 5 m									
Kab	eldos	e 12-p	ol.	Steuerleitung flexibel	fr mit A	eien Enden Aderendhülsen				
			GND	Bezug für Versorgung UB		violett				
			TXD	RS-232C, Sendeleitung	1	gelb				
			UA	Messsignal +/- 10 VDC		rosa				
			AGND	Bezug für Messsignal UA		grau				
		i	DGND	Bezug für Drehzahl, Winkel, RS-232C Kontrolle	i i	blau				
]		Uв	Versorgung 11 30 VDC, ca. 5 W		rot				
			Spur B	Winkelausgang nacheilend zur Spur A (Option)		grün				
			Spur A	Drehzahlausgang, Winkel voreilend (Option)	i	schwarz				
			Spur Z	(nicht verwenden)	į	weiss				
			Kontrolle	Eingang, Aktivierung: 3,5 30 VDC		weiss/grün				
			RXD	RS-232C, Empfangsleitung		braun				
			Schirm							
					Ţ	schwarz Schirm				
	G	enause								

1.				
	Technische Daten	Typ KSM219710-5, MatNr. 18008996		
	Anschluss		7-pol. neg. – offen	
	Länge r	n	5 (andere Länge auf Anfrage)	
	Durchmesser r	nm	6	
	Schutzart nach JEC/EN 60529		IP40	

6.1 Verlegung des Messkabels

- nicht parallel zu Starkstromleitungen oder Steuerleitungen verlegen
- nicht in der Nähe von starken elektromagnetischen Feldern, z.B. Transformatoren, Schweissgeräten, Schützen, Motoren usw.
- Falls dies nicht zu vermeiden ist, Messkabel in geerdetem Stahlpanzerrohr verlegen
- Kabelüberlängen vermeiden. Falls das nicht möglich ist, Überlängen nicht als geschlossenen Kabelring aufwickeln, um Induktionsflächen so klein wie möglich zu halten!

Durch eine bifilare Verlegung eine Verringerung von wirkenden Induktionsflächen

6.2 Hinweise für sichere elektrische Installation

Achten Sie bei dem Anschlusskabel auf einwandfreie Funktion der Schirmung!

Gegebenenfalls das Eloxal der Unterseite des Gehäuseunterbaus entfernen, um vollflächigen elektrischen Kontakt mit dem Maschinenbett herzustellen.

7. Mechanischer Einbau des Drehmoment-Messflansches

Der Drehmoment-Messflansch kann je nach Anwendung unterschiedlich eingebaut werden.

Da selbst bei kleinem Achsversatz sehr hohe Querkräfte und Biegemomente entstehen können, muss der Drehmomentsensor immer mit Ausgleichskupplungen versehen werden.

Generell gilt:

- Die Anlage muss entsprechend den geltenden Richtlinien und Gesetzen mit einem Berstschutz gesichert sein
- Es wird empfohlen, den Wellenstrang auf die torsionsund biegekritischen Drehzahlen zu berechnen. Im Betrieb sind diese Drehzahlen zu vermeiden. Für einen sicheren Betrieb der Anlage empfiehlt es sich, etwa 30 % unterhalb bzw. oberhalb der kritischen Drehzahlen zu bleiben
- Nach dem Einbau sollte je nach Drehzahl eine Betriebswuchtung der Anlage nach DIN 2060 erfolgen
- Die Maschinenschwingungen sollten nach VDI 2056 überprüft werden

Literatur:

Dubbel Taschenbuch für den Maschinenbau, Springerverlag

F. Holzweißig, H. Dresig, Lehrbuch der Maschinendynamik, Springerverlag.

DIN 2056 Beurteilungsmassstäbe für mechanische Schwingungen von Maschinen.

7.1 Montagehinweise

7.1.1 Wellentoleranz

Die Welle, auf die der Messflansch montiert werden soll, muss mit der Toleranz h6 gefertigt sein und eine Rautiefe Rt \leq 16 µm aufweisen.

7.1.2 Ausrichten des Stators zum Rotor

Die Vorderkante des Stators und die des Rotors müssen eine Ebene bilden.

Die axiale Toleranz beträgt ±0,5 mm. Rotor- und Stator-Mittelachse müssen übereinstimmen.

Die radiale Toleranz beträgt ebenfalls ±0,5 mm.

7.1.3 Montage- und Demontageanleitung für Schrumpfscheiben

Montage

Die Schrumpfscheiben werden einbaufertig geliefert. Sie sollten daher vor dem erstmaligen Verspannen nicht auseinandergebaut werden.

1. Anzugsmoment M_A der Schrumpfscheibe notieren (bei Schrumpfscheiben Fabr. Stüwe am Aussenring eingraviert).

2. Entfetten der Nabenbohrung und der Welle.

3. Messflansch mit Spannsatz auf die Welle aufschieben .

Achtung:

Nie die Spannschrauben anziehen, bevor der Drehmoment-Messflansch auf der Welle sitzt. Bei aussen liegendem Spannsatz muss zwischen Wellenende (Stirnseite) und Messflansch-Innenfläche ein Luftspalt von min. 2 mm gewährleistet sein (Eintauchtiefe der Welle = L3 - 2mm).

4. Spannschrauben von Hand anlegen.

5. Jede zweite Schraube mit ca. 10 % v. M_A anziehen, mit oberer Schraube beginnen, danach die restlichen. Anschliessend prüfen ob der Messflansch von Hand auf der Welle noch verdreht werden kann. Falls ja, die Schauben der Reihe nach mit ca. 10 % v. M_A weiter anziehen, bis der Sensor "handfest" sitzt.

6. Mit Taster an Zentrierung (75 bzw. 110^{H7} bzw. 140^{H7}) Rundlauf prüfen (20 ... 40 μ).

7. Höchsten Punkt suchen, Flanschstellung korrigieren (falls mit Gummihammer gearbeitet wird, nicht auf die Übertragerspulen, oder die blau eloxierten Gehäuseteile schlagen).

8. Vorgang wiederholen bis gewünschter Rundlauf erreicht wird.

9. Anzugsmoment der Spannsatzschrauben auf 20 % v. M_A erhöhen, jede zweite anziehen, danach die restlichen. Anschliessend alle der Reihe nach anziehen.

10. Rundlauf kontrollieren, Aufnehmer auf festen Sitz prüfen.

11. Anzugsmoment der Spannsatzschrauben auf 30 % v. M_{A} erhöhen.

12. Aufnehmer sitzt fest. Moment erhöhen, danach Schrauben im Kreis der Reihe nach bis zum max. Anzugsmoment M_A in mehreren Umläufen anziehen.

Alle Spannschrauben sind so lange anzuziehen, bis die vorderen Stirnflächen des Aussen- und Innenrings fluchten. Die Kontrolle des korrekten Verspannungszustandes ist somit optisch überprüfbar.

Wichtig:

Um Demontageprobleme durch Rostbildung zu vermeiden, nach der Montage Spalt zwischen Flanschnabe und Motorwelle mit Schutzwachs (z.B. Klüber Lubrication, Syntheso W) übersprühen!

Demontage

Der Lösevorgang ist ähnlich dem des Verspannens.

1. Damit die gespeicherte Energie des Aussenringes bei der Demontage langsam über die zu lösenden Schrauben abgebaut werden kann, müssen die Schrauben gleichmässig und der Reihe nach gelöst werden. Anfangs nur mit einer viertel Umdrehung.

Achtung!

Auf keinen Fall dürfen die Schrauben nacheinander herausgeschraubt werden.

2. Sollte sich der Aussenring nicht, nach ca. einer Umdrehung aller Schrauben, selbständig von dem Innenring lösen, kann mit Hilfe der Abdrückgewinde der Aussenring entspannt werden, indem einige der benachbarten Befestigungsschrauben in die Abdrückgewinde eingeschraubt werden. Der sich nun lösende Aussenring stützt sich auf die verbleibenden Schrauben ab. Dieser Vorgang muss bis zum selbständigen Lösen des Aussenringes durchgeführt werden.

3. Ausbau der Welle bzw. Abziehen der Nabe von der Welle. Rostansatz, der sich auf der Welle vor der Nabe gebildet haben könnte, muss zuvor entfernt werden.

4. Abziehen der Schrumpfscheibe von der Nabe.

Reinigung und Schmierung

Demontierte Schrumpfscheiben brauchen vor dem erneuten Verspannen nicht auseinander genommen und neu geschmiert zu werden. Nur wenn die Schrumpfscheibe verschmutzt ist, ist sie zu reinigen und die Kegelflächen zwischen Aussenring und Innenring sowie die Schrauben sind neu zu schmieren.

Es ist ein Feststoff-Schmiermittel mit hohem Molybdändisulfidgehalt, auf Basis MoS_2 , mit einem Reibwert von $\mu = 0,04$ zu verwenden.

Тур	Art	Hersteller
Molykote D-321 R	Gleitlack, Spray	Dow Corning
M Aema-Sol MO 84-K	Pulver-Spray	A.C. Matthes
Molykote G Rapid+	Spray oder Paste	Dow Corning
Aemasol MO 19 P	Spray oder Paste	A.C. Matthes

7.2 Montagevorschlag

Bild 11: Montagevorschlag mit Gelenkwelle

7.2.1 Verschraubung des Rotors, Befestigungsschrauben

Nenndrehmoment M	N.m	100	200	500	1 000	1 000	2 000	4 000	10,000	20,000
	INTIT	100	200	500	1000	1000	2 000	4 000	10 000	20 000
					1k2	1k3				
Baugrösse		BG 1		BG 2		BG 3			BG 4	BG 5
Gewinde		M8	M8	M12	M12	M12	M12	M12	M16	M16
Festigkeitsklasse		8.8	8.8	8.8	8.8	8.8	12.9	12.9	12.9	12.9
Minimale Einschraubtiefe	mm	6	8	13	13	13	16	16	18,5	26
Maximale Einschraubtiefe	mm	20	20	20	20	20	20	20	45	45
Anzugsmoment M_A – Flansch	N∙m	23	23	80	80	80	137	137	370	370
Anzugsmoment Schrumpfscheibe	N∙m	12	12	35	35	58	58	70	160	295
Wuchtgüte	Q	6,3								
Gegenflansch-Ebenheit	mm	0,01								
Gegenflansch-Rundlauf	mm	0,02								
Maximale Versatz Rotor – Stator:										
Axial		±1								
Radial		±1								

Wichtig: Die Eintauchtiefe ist unbedingt einzuhalten (Mass B4)!

8. Elektrische und mechanische Inbetriebnahme

8.1 Betriebsleuchtdiode

An der Oberseite des Elektronikgehäuses des Drehmoment-Messflansch ist ein Sichtfenster für die Betriebsleuchtdiode (LED) vorgesehen. Die LED kann in drei Variationen leuchten:

GRÜN GRÜN und ROT ROT ↓ ORANGE

Einschaltvorgang

Während des Einschaltens (Betriebsspannung wird angelegt), blinkt die LED grün. Danach erfolgt eine kurze Kommunikation mit der Rotorelektronik (LED orange). Kurze Zeit darauf, leuchtet die LED wieder grün. Anschliessend ist der Drehmoment-Messflansch betriebsbereit. Dieser Vorgang dauert etwa 3 Sekunden.

Kommunikation Messflanschelektronik intern oder PC $\leftarrow \rightarrow$ Drehmoment-Messflansch

Kommuniziert die Statorelektronik über das Spulenpaar mit der Rotorelektronik, so leuchtet die LED orange. Ebenso verhält sich die LED, wenn eine Kommunikation zwischen Anfragesteller (z.B. PC) und Drehmoment-Messflansch über die RS-232C-Schnittstelle vorherrscht.

Drehmomentüberlast

Falls der Drehmoment-Messflansch mechanisch überlastet wird (Nenndrehmoment + ca. 10 %), so leuchtet die LED rot. Diese kehrt wieder in den Zustand grün zurück, wenn der Drehmoment-Messflansch wieder innerhalb des Nenndrehmomentbereiches betrieben wird.

Fehlerhaftes Verhalten der Drehmoment-Messflansch-Elektronik

Falls die Drehmoment-Messflanschelektronik nicht ordnungsgemäss funktioniert, so blinkt die LED rot. Falls beim erneuten Einschalten des Drehmoment-Messflanschs dasselbe Verhalten vorliegt, so muss der Drehmoment-Messflansch ans Werk (Kistler) eingeschickt werden.

GRÜN	GRÜN blinkend	ORANGE	ROT	ROT blinkend	Ursache
	\checkmark				Einschaltzustand
\checkmark					Messflansch betriebsbereit
		~			Kommunikation zwischen Stator → Rotor Anfragesteller (PC) ← → Drehmoment- Messflansch
			$\overline{\mathbf{O}}$		Drehmoment-Messflansch mechanisch überlastet
				$\overline{\mathbf{i}}$	Drehmomentelektronik defekt, Kistler informieren!

8.2 Justieren und Kalibrieren des Drehmoment-Messflanschs

Nullpunkt und Verstärkung können nur an der Speiseeinheit Modell VA 3600 Typ 4704A... oder der Messwertverarbeitung eingestellt werden.

Dazu kann am Kontrolleingang Pin K des 12-poligen Einbausteckers ein TTL- oder 3,5 ... 30 V-Signal angelegt werden, um einen Ausgangssignalhub zu erzeugen, was dem Nennmoment entspricht (siehe dazu Typenschildaufdruck des Elektronikgehäuses des Drehmoment-Messflanschs).

Möglicher Einstellvorgang:

- Drehmoment-Messflansch einschalten und mind. 10 Minuten warmlaufen lassen
- Drehmoment-Messflansch muss drehmomentfrei sein, möglichst auf der Mess-Seite die Kupplung entfernen
- Nullpunkt im Modell VA 3600 Typ 4704A oder der Messwertverarbeitung einstellen
- Kontrollschalter am Modell VA 3600 Typ 4704A... drücken und gedrückt halten (oder anderweitig Kontrollsignal erzeugen)
- Ausgangsspannung durch Drehen an der Verstärkung auf genau 10 V einstellen
- Danach Kontrollschalter loslassen und Nullpunkt kontrollieren
- Gegebenenfalls Vorgang wiederholen.

Eine mechanische Kalibrierung ist genauer als ein Kalibrierdurchlauf mit Hilfe des Kontrollsignals!

8.3 Mechanische Kalibrierung

Hierzu ist eine Kalibriereinrichtung mit Hebelarm und Gewichten zur Drehmomenterzeugung notwendig.

Schritte beim Kalibrieren:

- Drehmoment-Messflansch einschalten und mind. 10 Minuten warmlaufen lassen
- Drehmoment-Messflansch mit Nennmoment belasten und wieder entlasten
- Nullpunkt genau abgleichen bzw. dokumentieren
- Drehmoment-Messflansch mit definiertem Drehmoment belasten
- Anzeige auf entsprechendes Drehmoment einstellen bzw. dokumentieren

Aufnahme einer Kalibrierkurve

Wenn der Drehmoment-Messflansch nur in einer Momentrichtung genutzt wird, reicht eine einfache Messung.

- Drehmoment-Messflansch mit Nennmoment belasten und wieder entlasten
- Drehmoment-Messflansch in 20 %-Schritten belasten bis zum vollen Nennmoment. Anschliessend in der gleichen Weise wieder entlasten. Zwischen den einzelnen 20 %- Schritten mindestens 30 Sekunden warten bis Messwert stabil ansteht, dann erst Anzeigewert registrieren

Für komplexere Einsatzfälle empfehlen wir, jährlich eine ausführliche Kalibrierung nach DIN 51309 vorzunehmen.

8.3.1 Aufbau einer einfachen Kalibriereinrichtung

Bild 12: Aufbau einer Kalibriereinrichtung

8.3.2 Berechnungsbeispiel Hebelarmlänge

$$L = \frac{M}{m \cdot g}$$
, wobei

Μ	=	Drehmoment
L	=	benötigte Hebelarmlänge
m	=	benötigte Masse
g	=	9,80665 m/s ² entspricht der Normalfall
-	bes	chleunigung (g ist ortsabhängig)

Beispiel: m = 1 kg, $M = 10 \text{ N} \cdot \text{m}$

$$\Rightarrow L_{M=10 \text{ N} \cdot \text{m}} = \frac{M}{m \cdot g} = \frac{10 \text{ N} \cdot \text{m}}{1 \text{ kg} \cdot 9,80665} \frac{\text{s}^2}{\text{m}} \approx 1,0197 \text{ m}$$

9. Drehmomentmessungen durchführen

9.1 Einschaltvorgang des Drehmoment-Messflanschs

9.2 Eigenschaften bei der Messbereichsumschaltung

Bei der Umschaltung des Messbereichs (1:1 \rightarrow 1:10 bzw. 1:10 \rightarrow 1:1) ist folgender Ablauf empfehlenswert:

10. RS-232C-Kommunikation

Über die RS-232C-Schnittstelle können drehmoment-äquivalente Messwerte übertragen werden. Das Sensormodell bezüglich der RS-232C-Kommandostruktur des Drehmoment-Messflanschs Typ 4510B... ist nachfolgend abgebildet.

Sensormodell

Bild 13: Sensormodell bezüglich der RS-232C-Kommandostruktur

Signalerfassung und Aufbereitung

Der Drehmoment-Messflansch ermittelt fortwährend den Drehmomentmesswert und zyklisch die Rotortemperatur. Im Funktionsblock INPut werden Kalibriereinstellungen und massgeblich die Messbereichsumschaltung vorgenommen. Ausserdem kann hierbei das Kontrollsignal initiiert werden.

Im CONFiguration- und FORMat-Funktionsblock werden Konfigurationen bezüglich der Messwertübergabe getätigt. Beide Funktionsblöcke werden zusammengefasst als MEASure-Funktionsblock bezeichnet.

Steuerung

Im TRIGger-Funktionsblock wird festgelegt, welche Aktion der Drehmoment-Messflansch bei externer Triggerung (digitales TTL-Signal) durchführen soll. Entweder wird das Kontroll-signal oder eine Messwertübergabe über die RS-232C-Schnittstelle bei externer Triggerung ausgelöst. Alle Kalibrier- und Benutzerdaten sind im MEMory-Funktionsblock netzausfallsicher abgespeichert.

10.1 Schnittstellenparameter

Die RS-232C-Schnittstelle des Drehmoment-Messflanschs arbeitet mit folgenden Einstellungen:

- Übertragungsgeschwindigkeit (Baudrate) 57 600 Bit/Sekunde
- 8 Datenbits
- 1 Stoppbit
- keine Parität

10.1.1 Konventionen und Syntax

Der Drehmoment-Messflansch antwortet über die RS-232C-Schnittstelle nur dann, wenn dieser vom Anfragesteller (z.B. PC) ein Kommando übermittelt bekommt (d.h. PC: *Master*, Drehmoment-Messflansch: *Slave*). Ausserdem wird immer eine Antwort vom Drehmoment-Messflansch gesendet, auch wenn vom Anfragesteller nur Konfigurationen übermittelt werden. Die Betriebs-LED des Drehmoment-Messflanschs leuchtet bei einer Kommunikation <u>orange (grün und rot zusammen)</u>.

Vom Anfragesteller werden ausnahmslos ASCII-Kommandos gesendet. An diese Kommandos müssen am Ende immer ein *<CR>* (*carriage return*) und ein *<LF>* (*line feed*) als Terminierungszeichen angehängt werden. Auch der Drehmoment-Messflansch übermittelt die selbe Terminierung zum Anfragesteller.

Beispiel:

Anfragesteller (z.B. PC):	MEAS:TORQ? <cr><lf> (Messwertanfrage)</lf></cr>
Antwort vom	
Drehmoment-Messflansch:	32789 <cr><lf> (drehmoment-</lf></cr>
	äguivalenter Messwert)

Gross- und Kleinschreibung wird nicht berücksichtigt. Auch ignoriert der Befehlsinterpreter des Drehmoment-Messflanschs eventuell vorangestellte Leerzeichen und Leerzeichen innerhalb des Kommandos.

Beispiel:

typisch identisch mit identisch mit

MEAS:TORQ?<CR><LF> MEAS :torq ? <CR><LF> MeaS :Torq?<CR><LF>

Die Terminierung muss immer mit der Zeichenfolge <CR><LF> erfolgen

Ein Kommando für eine Anfrage endet mit einem "?" (z.B. MEAS:TORQ?<CR><LF>)

Bei einer erfolgreichen Konfigurationsübermittlung wird eine "0" als Erfolgsmeldung zurückgesendet (Z.B. PC: CONF:TEMP<CR><LF> \rightarrow Sensor: 0<CR><LF>)

Falls ein Kommando aus unterschiedlichen Gründen nicht akzeptiert wird, so sendet der Drehmoment-Messflansch einen negativen Fehlerwert zurück

Die Farbe der Leuchtdiode (LED) des Drehmomentsensors wechselt während der Kommunikation über die RS-232C-Schnittstelle von grün nach orange

Im Folgenden werden aus Gründen der Übersichtlichkeit die Terminierungszeichen (<CR><LF>) weggelassen.

10.1.2 Fehlermeldungen

Der Drehmoment-Messflansch übermittelt über die RS-232C-Schnittstelle einen negativen Fehlerwert, falls ein Kommando aus unterschiedlichen Gründen nicht akzeptiert wurde (siehe folgende Tabelle):

Fehlerwert	Fehlerbeschreibung	Abhilfe
-100	Kommando wurde nicht verstanden	Kommandosyntax überprüfen (z.B. <i>MEAS</i> ? anstatt <i>MEASure</i> ?) Kommando noch mal senden, da Sensor event. beschäftigt
-101	"?" wurde bei einer Anfrage nicht angehängt	"?" bei Anfrage hinzufügen
-104	Berechnungsschritte führten zu einem Überlauf	Berechnungsvariablen überprüfen (firmeninterne Nutzung)
-105	Fehler beim Zugriff des nichtflüchtigen Speicherbereichs	Speicherbereich neu beschreiben, Kistler informieren
-106	Zugriff auf geschützter Speicherbereich	Speicherschutz aufheben (firmeninterne Nutzung)
-107	Kontinuierliche Übertragung zwischen Rotor- und Statorelektronik aktiv	Kontinuierliche Übertragung temporär abschalten (firmeninterne Nutzung)
-108	Übergebene Zeichenkette zu lang	Zeichenkette kürzen (firmeninterne Nutzung)
-109	Übergebener Zahlenwert ungültig	Zahlenwert überprüfen (firmeninterne Nutzung)
-110	Umschaltung zum erweiterten Messbereich nicht möglich	Sensor im erweiterten Messbereich kalibrieren (zu Kistler senden)

Der Fehlerwert –110 kann nur ab der Firmware-Version V2.00 des Stators übermittelt werden!

10.1.3 Messgeschwindigkeiten, Reaktionszeiten

Je nach Konfiguration im *CONFiguration*- und *FORMat*-Funktionsblock werden unterschiedliche Übertragungsgeschwindigkeiten über die RS-232C-Schnittstelle realisiert (Messwertabfragen pro Sekunde). Siehe dazu die Kommandos:

CONF (Messwertabfrage – Konfiguration für das MEAS-Kommando)

FORM (Ausgabeformat definieren)

Bei jeder Messwertabfrage wird ein drehmomentäquivalenter Wert übertragen. Dabei können schnelle Drehmomentänderungen in digitale Grössen wiedergegeben werden.

Es bietet sich an, das Kurzkommando *M*? (anstatt *MEAS*? oder *MEAS:TORQ*?) zu verwenden, um drehmomentäquivalente Messwerte mit hoher Übertragungsrate zu übertragen. Dabei wird die Reaktionszeit des Befehlsinterpreters im Drehmoment-Messflansch verkürzt.

Die folgenden Übertragungsraten gelten für die Nutzung des Kurzkommandos *M*? bzw. externer Triggerung mittels eines digitalen Signals (Kontrolleingang).

Triggerungsart	Ausgabeformat FORM:DATA: <ausgabeformat></ausgabeformat>	Messperiode in ms realisierbar	Messungen pro Sekunde realisierbar
Kommando M?	ASC	3	333
Kommando M?	HEX	2,5	400
Kommando M?	BIN	2	500
extern digital	ASC	2,5	400
extern digital	HEX	2	500
extern digital	BIN	1	1 000

Je höher die Abtastrate, desto mehr Messwerte können in einem Messdurchlauf entnommen werden. Dementsprechend steigt die Interpretationsfähigkeit der entstandenen Messkurve.

measure, analyze, innovate

10.1.4 Drehmomentmesswerte über RS-232C-Kommando anfordern

D

0

D(unbelastet)

D(neg. Nenndrehmoment)

M(pos. Nenndrehmoment)

D(pos. Nenndrehmoment)

M(neg. Nenndrehmoment

Drehmomentmesswerte können mit den Kommandos

MEAS:TORQ? MEAS? (falls zuvor mit CONF:TORQ konf.) Μ?

angefordert werden. Dabei wird nach jeder Anfrage nur ein drehmoment-äquivalenter Messwert übertragen. Für die spätere Interpretation der Messkurve ist die Zuordnung des positiven Drehmomentnennwertes und des digitalen Ausgabewertes entscheidend. Dabei entstehen folgende Zuordnungen:

Drehmoment digitaler Datenwert M(pos. Nennmom.) D(pos. Nennmom.) 0 D_(unbelastet) D (neg. Nennmom.) M_(neg. Nennmom.)

Der Wertebereich des drehmoment-äquivalenten Messwerts D erstreckt sich von 0 ... 65 535 (Digits) und kann hierbei nur positive Werte annehmen.

beim Einbau des Drehmoment-Messflanschs Da Offsetverschiebungen infolge von mechanischen Verspannungen vorkommen können, empfiehlt es sich, nur den digitalen Ausgangshub

 $D_{Hub} = D_{(pos. Nenndrehmoment)} - D_{(unbelastet)}$

zu bewerten. Der digitale Ausgangshub bei Nenndrehmoment entnehmen Sie aus Ihrem Kalibrierprotokoll oder aus dem Speicherbereich des Drehmoment-Messflanschs mit dem Kommando MEM:DATA:MAGN? (MEM:EXT:DATA: MAGN? für den erweiterten Messbereich).

Nenndrehmomentbereich des Drehmoment-Der Messflanschs kann zusätzlich mit dem Kommando MEM:RANG?

(MEM:EXT:RANG? für den erweiterten Messbereich) ermittelt werden.

Beispiel:		
PC-Kommando	\rightarrow	Antwort des Drehmoment-
		Messflanschs
MEM:DATA:MAGN?	\rightarrow	26658 (digitaler
		Ausgangshub für 1:1-
		Messbereich)
MEM:RANG?	\rightarrow	500 (Nenndrehmoment für
		1:1-Messbereich in N·m)

Daraus folgt:

Im 1:1-Messbereich entsteht bei 500 N·m ein digitaler Ausganghub von 26 658, der dem digitalen Offsetwert im unbelasteten Fall hinzuaddiert wird.

10.1.5 Drehmomentmesswerte mittels externer Triggerung anfordern

Die **externe Triggerung** mit einem digitalen Signal kann nur erfolgen, wenn zuvor mit dem *TRIGger*-Kommando einmalig nach dem Einschaltzustand der Drehmoment-Messflansch initialisiert wurde. Siehe dazu das Kommando:

TRIG (Triggermodus festlegen).

Bei jedem Triggerungsvorgang vom Anfragesteller (z.B. PC oder SPS) wird ein drehmoment-äquivalenter Messwert vom Drehmoment-Messflansch übertragen.

Benutzen Sie hierbei den externen digitalen Kontrolleingang (PIN K des 12-poligen Einbausteckers oder PIN 4 des 7-poligen Einbausteckers). Die Zuordnungen zwischen logischen Zuständen und Spannungspegeln entnimmt man aus dem Kapitel "Steckerbelegung, Anschlussplan".

Die Periode $T_{Trigger}$ (Messperiode) sollte nie kürzer sein, als im Kapitel "Messgeschwindigkeiten, Reaktionszeiten" vorgegeben, um eine sichere RS-232C-Übertragung vom Drehmoment-Messflansch zu gewährleisten!

Während den zyklischen Triggerungen akzeptiert der Drehmoment-Messflansch keine RS-232C-Kommandos vom Anfragesteller (z.B. PC). Um eine Kommunikation wieder zu etablieren, müssen die zyklischen Triggerungen vorher beendet werden.

10.2 Typischer Messablauf

Wird der Drehmomentsensor eingeschaltet, so sollte die Elektronik innerhalb des Sensors ca. 10 Minuten warmlaufen.

Falls gewünscht, können alle Benutzerdaten vom Speicherbereich des Drehmomentsensors zur Sensoridentifikation ausgelesen werden. <u>Wichtig</u>: digitaler Ausgangshub (Sollwert).

Der Messbereich (sofern der Sensor in zwei Bereichen kalibriert), die Triggerungsart und das Ausgabeformat kann hier definiert werden.

Der digitale Offsetwert (im unbelasteten Fall = $0 \text{ N} \cdot \text{m}$) ist interessant, falls relative Werte zur Messung herangezogen werden sollen (empfehlenswert: digitale Tarierung bei der Messwerterfassung). Verwenden Sie eine möglichst hohe Messrate, um schnelle mechanische Änderungen zu erfassen.

Zyklisch kann die Rotortemperatur (*MEAS:TEMP?*) ermittelt werden. Z.B. alle 500 Drehmomentmesswerte 1 Temperaturmesswert (da eine Temperaturänderung des Rotors wesentlich langsamer).

Mit Hilfe des digitalen Ausgangshubs (Sollwert) können Zuordnungen zwischen den drehmomentäquivalenten Messwerten und der tatsächlichen Drehmomentwerten vorgenommen werden.

10.3 Konfigurations-Kommandos

INPut

Mit der INPut-Kommandogruppe wird massgeblich die Rotorelektronik beeinflusst. Das Kontrollsignal kann in dieser Kommandogruppe aktiviert oder deaktiviert werden. Auch die Verstärkungsumschaltung (Auswahl zwischen 1:1- und 1:10-Messbereich) wird hier vorgenommen.

CONFiguration und FORMat

In diesen Kommandogruppen wird festgelegt, welche Messwertarten und welche Ausgabeformate definiert werden sollen.

TRIGger

Mit der TRIGger-Kommandogruppe kann das Drehmomentsensorverhalten festgelegt werden, falls ein Signalwechsel am Kontrolleingang getätigt wird (Auslösen der Kontrolle oder drehmoment-äquivalente Messwertübergabe über die RS-232C-Schnittstelle).

MEMory

In dieser Kommandogruppe sind alle Kalibrier- und Benutzerdaten abgelegt.

10.3.1 Messbereichsumschaltung

INP:GAIN:MULT:<function>

Parameter <function> =</function>	ON :	(1:10-Messbereich)
	OFF	(1:1-Messbereich)
Anfrage INP:GAIN:MU	LT?	

Beschreibung

Mit diesem Kommando wird eine Messbereichsumschaltung realisiert. Mit INP:GAIN:MULT:ON wird der 1:10-Messbereich und mit INP:GAIN:MULT:OFF der Standardmessbereich (1:1-Messbereich) definiert. Standard INP: GAIN: MULT: OFF (1:1 Messbereich)

Bemerkungen

Die Messbereichsumschaltung darf nur angewendet werden, wenn der Drehmoment-Messflansch tatsächlich im 1:10-Messbereich kalibriert worden ist. Mit der Anfrage MEM:EXT: VALI? erfährt der Anwender, ob der Drehmomentsensor im 1:10-Messbereich kalibriert wurde (siehe MEMory-Kommandogruppe).

Beispiele

PC-Kommando

INP:GAIN:MULT:ON

→Antwort des Drehmoment-Messflanschs $\rightarrow 0$ (Messbereich 1:10) $\rightarrow ON$

INP:GAIN:MULT? INP:GAIN:MULT:OFF \rightarrow 0 (Messbereich 1:1) INP:GAIN:MULT?

→ OFF

10.3.2 Kontrollsignal (Kalibriersignal) ein- oder ausschalten

INP:CONT:	<function></function>				
Parameter	<function></function>	=	ON eing	Kontrollsignal eschaltet	wird
			OFF	Kontrollsignal	wird
			ausg	eschaltet	
			(Nor	malbetrieb)	

Abfrage INP:CONT:STAT?

Beschreibung

Mit diesem Kommando kann das Kontrollsignal (umgangssprachlich Kalibriersignal) ein- oder ausgeschaltet werden. Dabei wird der Signalweg zwischen Rotor- und Statorelektronik überprüft. Mit *INP:CONT:ON* wird das Kontrollsignal aktiviert, dabei wechselt der Ausgangssignalwert (Ausgangsspannung/Ausgangsfrequenz bzw. digitaler Ausgangswert) zum Nennwert. Der Normalbetrieb wird wieder mit *INP:CONT:OFF* erreicht, dabei wird das Kontrollsignal ausgeschaltet. Der Betriebszustand kann mit *INP:CONT:STAT?* abgefragt werden.

Standard INP:CONT:OFF → Kontrollsignal (ausgeschaltet (Normalbetrieb)

Bemerkungen

Wird das Kontrollsignal mit *INP:CONT:ON* eingeschaltet, so bleibt dieses solange aktiviert, bis das Kommando *INP:CONT:OFF* übermittelt oder der Drehmoment-Messflansch aus- und wieder eingeschaltet wird.

Auch kann das Kontrollsignal durch den externen digitalen Zustand des Kontroll-Pin K (permanenter Zustand 0) nicht abgeschaltet werden, wenn das Kontrollsignal zuvor durch *INP:CONT:ON* aktiviert wurde.

PC-Kommando	\rightarrow	Antwort des	
INP:CONT:ON INP:CONT:STAT? <i>Trigger: 0-Zustand</i>	\rightarrow \rightarrow \rightarrow	0 (Kontrollsignal ein) ON <keine antwort=""></keine>	
		(Kontrollsignal bleibt aktiv)	
INP:CONT:OFF INP:CONT:STAT?	\rightarrow	0 (Kontrollsignal aus) OFF	

10.3.3 Messwertabfrage – Konfiguration für das MEAS-Kommando

CONF:<function>

Parameter <function> = Abfrage CONF? → TORQ (Drehmomentmesswert) TEMP (Rotortemperatur)

Beschreibung

Durch dieses Kommando wird die Art der Messwertabfrage festgelegt. Mit *CONF:TORQ* kann anschliessend mit *MEAS?* ein drehmoment-äquivalenter Wert ermittelt werden. Durch *CONF:TEMP* wird durch ein anschliessendes *MEAS?* die Rotortemperatur übermittelt. Die definierte Konfiguration kann mit *CONF?* ermittelt werden.

Bemerkung

Das Kurzkommando M? übermittelt ausschliesslich einen drehmoment-äquivalenten Messwert.

Standard: CONF:TORQ

PC-Kommando	\rightarrow		Antwort des Drehmoment- Messflanschs
CONF:TORQ	\rightarrow	0	(Konfiguration Drehmomentmesswert)
CONF?	\rightarrow	TORQ	
FORM:DATA:ASC	\rightarrow	0	(dezimales Ausgabeformat)
MEAS?	\rightarrow	32765	(drehmoment äquivalenter Wert)
MEAS?	\rightarrow	32767	
CONF:TEMP	\rightarrow	0	(Konfiguration Rotortemperatur)
CONF?	\rightarrow	TEMP	
MEAS?	\rightarrow	26	(Rotortemperatur in °C)

10.3.4 Ausgabeformat definieren

FORM:DATA:<function>

Parameter <function></function>	\rightarrow	=ASC	(dezimales
	\rightarrow	HEX	Ausgabeformat) (hexadezimales
	→	BIN	Ausgabeformat) (binäres Ausgabeformat)
			0

Anfrage FORM:DATA?

Beschreibung

Das Ausgabeformat über die RS-232C-Schnittstelle bezüglich des Drehmomentmesswertes kann mit diesem Kommando beeinflusst werden. Durch *FORM:DATA:ASC* wird ein ASCII-Format in dezimaler Form definiert. Durch *MEAS*? (oder *MEAS:TORQ*? oder *M*?) wird ein drehmoment-äquivalenter Messwert (0 ... 65 535) übertragen. Mit *FORM:DATA:HEX* wird ein hexadezimales Ausgabeformat definiert (0000 ... FFFF).

Ein binäres Ausgabeformat (2 Bytes: *<HBYTE><LBYTE>*, wobei

 $(H/L)BYTE \in \{00000000_2...11111111_2\}, wird mit$ *FORM:DATA:BIN*eingestellt.

Bemerkung

Beachten Sie, dass beim binären Ausgabeformat Nutzbytes vorkommen, die den Zeichen der Terminierung entsprechen können! Werten Sie deshalb in Ihrer Schnittstellenapplikation nur die 2 letzten der 4 Bytes (<HBYTE> <LBYTE>*<CR><LF>*) als Terminierung aus!

Standard FORM: DATA: ASC

PC-Kommando	\rightarrow		Antwort des Drehmoment- Messflansches
CONF:TORQ	\rightarrow	0	(Konfiguration Drehmomentmesswert
FORM:DATA:ASC	\rightarrow	0	(dezimales Ausgabeformat)
FORM:DATA?	\rightarrow	ASC	
M?	\rightarrow	46238	
CONF:TORQ	\rightarrow	0	
FORM:DATA:HEX	\rightarrow	0	(hexadezimales
			Ausgabeformat)
-FORM:DATA?	\rightarrow	HEX	0
M?	\rightarrow	B49C	(= 4623610)
MCONF:TORQ	\rightarrow	0	
FORM:DATA:BIN?	\rightarrow	0	(binäres Datenformat)
FORM:DATA?	\rightarrow	BIN	
M?	\rightarrow	<10110100><	(= 4623910)
\rightarrow		10011111>	

10.3.5 Triggermodus festlegen

TRIG:MODE:<function>

Parameter < function> =

CONT (externer Trigger aktiviert/deaktiviert Kontrollsignal) MEAS (externer Trigger löst Messwertübertragung über

RS-232C aus) Anfrage TRIG:MODE?

Beschreibung

Durch dieses Kommando wird festgelegt, welche Aktion der Drehmoment-Messflansch bei externer Triggerung am Eingangs-Pin K (digitales TTL-Signal) durchführen soll. Mit *TRIG:MODE:CONT* wird bei externer Triggerung (permanenter logischer Zustand) das Kontrollsignal aktiviert oder deaktiviert. Durch *TRIG:MODE:MEAS* übermittelt der Drehmoment-Messflansch einen drehmomentäquivalenten Messwert bei externer Triggerung. Pro Triggervorgang (logischer 0-1-Zustandswechsel an PIN K des 12-poligen Einbausteckers) wird ein Messwert übertragen.

Bei einer getriggerten Messwertübergabe sollten Sie nie schneller triggern, als im Kapitel "Messgeschwindigkeiten, Reaktionszeiten" vorgegeben, um sichere RS-232C-Übertragungen zu gewährleisten!

Standard TRIG: MODE: CONT

PC-Kommando	\rightarrow	Antwort des Drehmoment-
		Messflansches
TRIG:MODE:CONT	\rightarrow 0	(Kontrollsignal bei ext.
		Triggerung)
TRIG:MODE?	\rightarrow cont	
Trigger: 1-Zustand	→ <keine< td=""><td>(Kontrollsignal ein)</td></keine<>	(Kontrollsignal ein)
	Antwort>	
Trigger: 0-Zustand	→ <keine< td=""><td>(Kontrollsignal aus,</td></keine<>	(Kontrollsignal aus,
	Antwort>	Normalbetrieb)
FORM:DATA:ASC	\rightarrow 0	(dezimales Ausgabeformat)
TRIG:MODE:MEAS	$\rightarrow 0$	(Messwertübertr. Bei ext.
		Triggerung
TRIG:MODE?	\rightarrow MEAS	
Trigger: 0-1-	→ 43788	(drehmoment-äquivalenter
Wechsel		Messwert)
Trigger: 0-1-	→ 43956	
Wechsel		
Trigger: 0-1-	→ 44228	
Wechsel		

10.3.6 Sensordaten ermitteln

OUTP:FREQ:CONT

DATA:MAGN

*IDN? IDN?	Drehmoment-Messflansch – Identifikation
MEN	Λ: <function>?</function>
Para	meter <function> =</function>
	Allgemeine Drehmoment-Messflanschdaten
ТҮРЕ	Drehmoment-Messflansch-Typ
SER	Seriennummer
MDAT	Herstelldatum
CDAT	Kalibrierdatum
CWOR	Kalibrierbearbeiter
CUST	Name des Kunden
TMIN	Minimale Einsatztemperatur in °C
ТМАХ	Maximale Einsatztemperatur in °C
SOUR	Ausgangsart(en)
SPE:MAX	Maximale Drehzahl in min ⁻¹
SPE:IMP	Impulse pro Umdrehungen
	Daten für den 1:1-Messbereich
RANG	Nenndrehmoment in N·m
LINE	Linearität in % bezogen auf den Endwert
OUTP:VOLT:MAGN	Ausgangsspannungshub bei Nenndrehmoment in V
OUTP:VOLT:CONT	Ausgangsspannungshub bei Kontrolle in V
OUTP:FREQ:MAGN	Ausgangsfrequenzhub bei Nenndrehmoment in kHz

Digits

Ausgangsfrequenzhub bei Kontrolle in kHz

digitaler drehmoment-äquivalenter Ausgangshub in

	Daten für den 1:10 – Messbereich
EXT:VALI	Ermittlung, ob Sensor im 1:10-Messbereich kalibriert
EXT:RANG	Nenndrehmoment in N·m
EXT:LINE	Linearität in % bezogen auf den Endwert
EXT:OUTP:VOLT:MAGN	Ausgangsspannungshub bei Nenndrehmoment in V
EXT:OUTP:VOLT:CONT	Ausgangsspannungshub bei Kontrolle in V
EXT:OUTP:FREQ:MAGN	Ausgangsfrequenzhub bei Nenndrehmoment in kHz
EXT:OUTP:FREQ:CONT	Ausgangsfrequenzhub bei Kontrolle in kHz
EXT:DATA:MAGN	digitaler drehmoment-äquivalenter Ausgangshub in Digits

Beschreibung

Durch die MEMory-Kommandogruppe können alle relevanten Daten aus dem nichtflüchtigen Speicherbereich ermittelt werden.

Anwendungsbereiche:

- automatisierte Sensoridentifikation
- Zuordnung der drehmoment-äquivalente Messwerte der RS-232C-Schnittstelle zum jeweiligen Nennmessbereich

Beispiel 1: Geräteidentifikation

Ein Drehmoment-Messflansch Typ 4510B... der Kistler besitzt eine Geräteidentifikationszeichenkette, die folgendermassen aufgebaut ist:

Kistler Lorch GmbH_4510BStator_yyyy-mm-dd_Vx.xx_4510BRotor_yyyy-mm-dd_Vx.xx

Beispiel 2: Ermittlung allgemeiner Daten

Die allgemeinen Daten eines Zwei-Bereichssensor Typ 4510B... mit Spannungsausgang von ± 10 V bei ± 100 N·m Nenndrehmoment soll über die RS-232C-Schnittstelle ausgelesen werden:

PC-Kommando	\rightarrow	Antwort des Drehmo-
		mentsensors
MEM:TYPE?	\rightarrow	4510B100A0B10
MEM:SER?	\rightarrow	109602
MEM:MDAT?	\rightarrow	2014
MEM:CDAT?	\rightarrow	2014-01-23
MEM:RANG?	\rightarrow	100
MEM:SPE:MAX?	\rightarrow	12 000
MEM:SPE:IMP?	\rightarrow	1x60

Beispiel 3:

Ermittlung messtechnischer Daten des 1:1-Messbereichs

MEM:OUTP:VOLT:MAGN?	\rightarrow	10
MEM:OUTP:VOLT:CONT?	\rightarrow	10
MEM:OUTP:FREQ:MAGN?	\rightarrow	0.000
(da im Bsp. nur Spannungsaus	gang)	
MEM:OUTP:FREQ:CONT?	\rightarrow	0.000
(da im Bsp. nur Spannungsausg		

Beispiel 4:

Ermittlung messtechnischer Daten des 1:10-Messbereichs

MEM:EXT:OUTP:VOLT:MAGN? \rightarrow	10
MEM:EXT:OUTP:VOLT:CONT? \rightarrow	10
MEM:EXT:OUTP:FREQ:MAGN? \rightarrow	0.000
(da im Bsp. Nur Spannungsausgang)	
MEM:EXT:OUTP:FREQ:CONT? \rightarrow	0.000
(da im Bsp. nur Spannungsausgang)	

Beispiel 5:

Ermittlung der Typenschildangaben

Ein Zwei-Bereichssensor, der in beiden Messbereichen kalibriert wird, ist mit zwei Typenschildern ausgestattet. Deren Angaben können über die RS-232C-Schnittstelle ausgelesen werden:

Туре:	4510B100A1B10
Serial No.:	109602
Range:	100 N·m
Ext. Range:	10 N·m
Max. Speed:	12000 1/min
Imp./Rev.:	1x60
Signal Output:	0±10V LC

10.4 Messkommandos

10.4.1 Drehmoment- und Temperaturmessgrösse übertragen

MEAS<function>

Parameter <function> = ? (Messwertübertragung, gemäss CONF-Einstellung) :TORQ? (Drehmomentmesswert) :TEMP? (Rotortemperatur messwert)

Beschreibung

Mit diesem Kommando kann der Drehmoment-Messflansch über die RS-232C-Schnittstelle ein drehmomentäquivalenter Messwert oder die Rotortemperatur übermitteln. Mit *MEAS?* wird je nach *CONF*-Einstellung die Drehmoment- oder Temperaturmessgrösse übermittelt. Der Drehmomentsensor übertragt durch *MEAS:TORQ?* einen drehmomentäquivalenten Messwert und mit *MEAS:TEMP?* die Rotortemperatur in °C.

Bemerkung

Anstatt *MEAS:TORQ?* bzw. *MEAS?* (zuvor mit *CONF: TORQ* definiert) kann auch das Kurzkommando *M?* verwendet werden. Dies erhöht die Reaktionsgeschwindigkeit des Befehlsinterpreters im Drehmoment-Messflansch zur Übertragung eines drehmomentäquivalenten Messwerts.

PC command	\rightarrow		Antwort des Drehmomentsensors
FORM:DATA:ASC	\rightarrow	0	(dezimales Ausgabeformat)
MEAS:TORQ?	7	52050	Messwert)
MEAS:TORQ?	\rightarrow	32102	
MEAS:TORQ?	\rightarrow	31856	
MEA S:TEMP?	\rightarrow	32	(Rotortemperaturmesswert)
FORM:DATA:ASC	\rightarrow	0	(dezimales Ausgabeformat)
CONF:TORQ	\rightarrow	0	(Konfiguration Drehmoment)
MEAS?	\rightarrow	45327	(drehmoment-äquivalenter
			Messwert)
MEAS?	\rightarrow	46201	
MEAS?	\rightarrow	46128	

\rightarrow	0	(dezimales Ausgabeformat)
\rightarrow	0	(Konfiguration Drehmoment)
\rightarrow	D0AE	(Drehmoment-Äquivalenter
		Messwert)
\rightarrow	D205	
\rightarrow	D275	
\rightarrow	0	(Konfiguration
		Rotortemperatur)
\rightarrow	31	(Rotortemperatur in °C)
\rightarrow	31	(Rotortemperatur in °C)
	$\begin{array}{c} \rightarrow \rightarrow \rightarrow \\ \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \end{array}$	$\begin{array}{ccc} \rightarrow & 0 \\ \rightarrow & 0 \\ \rightarrow & D0AE \end{array}$ $\begin{array}{ccc} \rightarrow & D205 \\ \rightarrow & D275 \\ \rightarrow & 0 \end{array}$ $\begin{array}{ccc} \rightarrow & 31 \\ \rightarrow & 31 \end{array}$

11. Wartung

- Drehmoment-Messflansche der Typ 4510B... sind nahezu wartungsfrei
- Präzisionsanwendungen: Drehmoment-Messflansch jährlich neu kalibrieren (Kalibrierung im Werk oder mit entsprechender Kalibriervorrichtung)
- Kabelstecker monatlich auf festen Sitz kontrollieren
- Kabel monatlich auf Beschädigung überprüfen

12. Instandsetzen der Messwelle

- Nullpunktverschiebung kleiner als etwa 2 % Nullpunkt neu abgleichen
- Nullpunktverschiebung zwischen etwa 2 % und etwa 5 %: Drehmoment-Messflansch wurde überlastet Nullpunkt kann einmalig am Messverstärker neu abgeglichen werden
- Nullpunktverschiebung grösser als etwa 5 % oder mehrmals zwischen 2 % und 5 % Drehmoment-Messflansch ins Werk zur Überprüfung
- Aufnehmer hat Hysterese zwischen Links- und Rechtsmoment Aufnehmer wurde überlastet. Neue Torsionswelle ist erforderlich. Aufnehmer zurück ins Werk zur Reparatur

13. Technische Daten

Тур 4510В			100	200	500	1k2	1k3	2k0	4k0	10k	20k
Nenndrehmoment	Mnom	N∙m	100	200	500	1 000	1 000	2 000	4 000	10 000	20 000
Messbereich		N∙m	100	200	500	1 000	1 000	2 000	4 000	10 000	20 000
übertr. Moment Schrumpfscheibe		N∙m	570	570	2 400	2 400	4 060	4 060	10 400	26 500	44 000
Grenzdrehmoment	Mop	N⋅m	265	400	1 300	1 800	1 800	3 000	7 500	16 000	30 000
Bruchdrehmoment	M _{rupt}	N⋅m	>400	>800	>2 000	>4 000	>4 000	>8 000	>16 000	>40 000	>80 000
Wechseldrehmoment	M_{dyn}	N⋅m	100	200	500	1 000	1 000	2 000	4 000	10 000	20 000
Nenndrehzahl	n _{nom}	1/min	12 000	12 000	9 000	9 000	9 000	9 000	9 000	4 000	4 000
Torsionssteifigkeit	Ст	kN∙m/rad	125	290	417	1 316	1 587	2 597	5 333	21 277	27 397
Verdrehwinkel bei M _{nom}	φ	0	0,046	0,04	0,069	0,044	0,036	0,044	0,043	0,027	0,042
Grenzbiegemoment	MB	N⋅m	1 600	1 600	1 700	1 700	5 000	5 000	8 500	18 000	18 000
Längskraft	F _A	kN	22	20	54	78	116	84	212	379	475
Grenzquerkraft	Fq	kN	3	3	8	8	12	15	20	30	40
Gewicht Rotor	m _{rotor}	kg	4,4	4,4	7,7	7,8	10	10	12	36	41,8
Gewicht Stator	m _{stator}	kg	3,6	3,6	4,4	4,4	4,4	4,4	4,4	2,3	2,8
Massenträgheitsmoment Rotor	Jrotor	kg·m²·10⁻³	11,4	11,5	31	31,2	39,3	39,4	55,3	374	495
Anteilige Masse Rotor (Messseite)	m _{rotor-M}	kg	2,2	2,2	2,9	2,9	3,7	3,7	3,8	7,4	7,4
Anteiliges Massenträgheits-	jrotor-M	kg·m²·10⁻³	8,2	8,2	20,1	20,2	21,8	21,8	21,9	90,8	90,8
moment Rotor (Messseite)											
Wuchtgüte	Q		6,3								
Gehäusematerial			Al, eloxiert								
Schutzart			IP54								

13.1 Mechanische Grunddaten

13.2 Allgemeine elektrische Daten

Allgemeine elektrische Daten

Ausgangssignal Option B1	VDC	±0 10
bei Mnom (Nennkennwert)	VDC	10
Ausgangssignal Option B2	kHz	100 ±40
bei Mnom (Nennkennwert)	kHz	140 (40)
Lastwiderstand	kΩ	>10
Grenzfrequenz –3 dB	kHz	1
100 % Kontrolleingang	VDC	"Ein" 3,5 30
		"Aus" 0 2
Kontrollsignal	% FSO	100 ±0,1
Speisespannung	VDC	11 30
Leistungsaufnahme	W	<5

Elektrische Messdaten

Nullpunkt-Stabilität (über 24 h)	% FSO	0,03
Referenztemperatur	°C	22 ±2
Betriebstemperaturbereich	°C	10 6 0
(Nenntemperaturbereich)		
Gebrauchstemperaturbereich	°C	0 70
Lagertemperaturbereich	°C	-25 80

13.3 Elektrische Messdaten – Standard Messbereich 1:1

Elektrische Messdaten – Standard Messbereich 1:1

Nenndrehmoment	N⋅m	100 4 000	10 000 20 000
Genauigkeitsklasse		0,2	0,2
Linearitätsabweichung einschl. Hysterese	%FSO	<±0,1	<±0,2
Temperatureinfluss auf den Nullpunkt	%FSO/10 °C	<±0,2	<±0,2
Temperatureinfluss auf den Kennwert	%FSO/10 °C	<±0,2	<±0,2

13.4 Elektrische Messdaten – erweiteter Messbereich 1:5, 1:10

Elektrische Messdaten – zweiter Messbereich 1:10, 1:5 (Option A1, A2)

Nenndrehmoment	N·m	100 4 000
Genauigkeitsklasse		0,4
Linearitätsabweichung einschl. Hysterese	%FSO	<±0,2
Temperatureinfluss auf den Nullpunkt	%FSO/10 °C	<±0,4
Temperatureinfluss auf den Kennwert	%FSO/10 °C	<±0,4

Elektrische Messdaten – Drehzahl

Impulse/Umdrehung		1x60
Ausgangssignal	V	5 (TTL)

KISTLER measure. analyze. innovate.

14. Abmessungen

Bild 1: Typ 4510B... Baugrösse 1 und 3, 100 N·m, 200 N·m, 1 000 N·m, 2 000 N·m, 4 000 N·m Bild 2: Typ 4510B... Baugrösse 2, 500 N·m und 1 000 N·m

(M) = Messseite

Bau- grösse	Messbe- reich N·m	øD	ØD1 _{H7}	øD2	øD3	øD4	øD5 _{G5}	øD6	B1	B2	B3	B4 ²⁾	B5	Т	E	TKø	G	н	H1
1	100	197	75	120	140	144	48	90	78	104	38	68	70	20	5	101,5	M8	180	120,5
1	200	197	75	120	140	144	48	90	78	104	38	68	70	20	5	101,5	M8	180	120,5
2	500	228	110	155	175	179	48	-	83,5	85,5	65	-	-	20	5	130	M12	225	137,7
2	1 000	228	110	155	175	179	48	-	83,5	85,5	65	-	-	20	5	130	M12	225	137,7
3	1 000	228	110	155	175	179	65	141	83,5	123	57	86	88	19	5	130	M12	225	137,7
3	2 000	228	110	155	175	179	65	141	83,5	123	57	86	88	19	5	130	M12	225	137,7
3	4 000	228	110	155	175	179	80	170	83,5	132	64	93	95	19	5	130	M12	225	137,7

202 204

ğ

Bild 3: Typ 4510B... Baugrösse 4, 10K

Abmessungen in mm

Bau- grösse	Messbereich N·m	øD	øD1 н7	øD2	øD3	øD4	øD5 c5	øD6 g6	B1	B2	B5	E	TKø	G	н
4	10 000	297	140	250	262	165	115	263	79	142,5	119	7	218	M16	148,5

Bild 4: Typ 4510B... Baugrösse 5, 20K

Abmessungen in mm

Bau- grösse	Messbereich N·m	øD	øD1 _{Н7}	øD2	øD3	øD4	øD5 _{G5}	øD6	B1	B2	B4 ²⁾	B5	B6	E	TKø	G	Н
5	20 000	297	140	250	280	293	130	290	94	164	118	120	125	17	218	M16	148,5

15. Bestellschlüssel und Zubehör

Typ/Art. Nr.

Mitgeliefertes Zubehör

• keines

Zubehör (optional)

•	Anschlusskabel. Länge 5 m	KSM007203
•	Anschlusskabel, Länge 5 m.	
	12-pol. – freie Enden	KSM124970-5
•	Anschlusskabel, Länge 5 m,	
	7-pol. – freie Enden	KSM219710-5
•	Anschlusskabel, Länge 2,5 m,	
	12-pol. – CoMo Torque	KSM186420-2,5
•	Kabeldose 7-pol. (Stecker C)	KSM000517
•	Kabeldose 8-pol. (Stecker D)	KSM013136
•	ControlMonitor CoMo Torque	4700B
	Auswertegerät für Drehmomentsensoren	
•	Adapterflansche	2300A
•	Drehsteife Lamellenkupplungen	2300A
•	SensorTool	4706A

Unser Kalibrierservice DKD-K-37701 bietet rückführbare Kalibrierungen für Drehmomentsensoren aller Hersteller an.

Weitere Kabel und Stecker siehe Datenblatt 000-615.

Bestellschli	üssel		
		Тур 4510	в
			ÎÎÎÎ
Messbereich	e în N∙m		
100	Baugrösse 1	100	
200	Baugrösse 1	200	
500	Baugrösse 2	500	
1 000	Baugrösse 2	1k2	
1 000	Baugrösse 3	1k3	
2 000	Baugrösse 3	2k0	
4 000	Baugrösse 3	4k0	
10 000 ¹⁾	Baugrösse 4	10k	
20 000 ¹⁾	Baugrösse 5	20k	
Bereichsausv	wahl		
Ohne		A0	
Zwei-Bereich	issensor,		
Nenndrehmo	oment 1:10	A1	
(Messbereich	nsumschaltung)		
Zwei-Bereich	issensor,		
Nenndrehmo	oment 1:5	A2	
(Messbereich	nsumschaltung)		
Ausgang Dre	ehmoment		
Analogausga	ng ±10 VDC	B1	
Frequenzaus	gang 100 ±40 kHz	z B2	
Erhähta Can	auigkoit		
Ohno	auigkeit	0	
Onne		U	

¹⁾ keine Bereichsauswahl A1 und A2 möglich

Bestellbeispiel Standard:

Typ 4510B100A0B10

Drehmomentsensor: Nenndrehmoment 100 N·m, ohne Bereichsauswahl: A0, Analogausgang ± 10 VDC: B1, ohne erhöhte Genauigkeit: 0

16. Konformitätserklärung

EC Declaration	of Conformity	
EG-Konformita	atserklärung	
Déclaration de	conformité CE	
Manufacturer Hersteller Fabricant	Kistler Lorch GmbH 73547 Lorch Germany	
declares that the product/erklä	rt, dass das Produkt/déclare que le p	produit
Name/Name/Nom	Torque Measuring Flange / Drehmoment-Messflansch / Torque Capteur	
Туре/Тур/Туре	4510B	
Modules/Module/Modules	-	
Options/Optionen/Options	all/alle/toutes	
relates with the following stand est conforme aux normes suiva	lards/mit den folgenden Normen üb ntes	ereinstimmt/
EMC Emission EMV Störaussendung Emission EMC	EN 61000-6-4:2011-09	(Class A)
EMC Immunity EMV Störfestigkeit Immunité EMC	EN 61000-6-2:2006-03	
Following the provisions of dire aux dispositions de directive	ctive/Gemäss den Bestimmungen de	er Richtlinie/Conformément
	2004/108/EG	(EMC / EMV / EMC)
		/

17. Index

Α

Abmessungen	50
Allgemeine elektrische Daten	48
Anschlusskabel	16
Ausgabeformat definieren	40

В

Bestellschlüssel	und 2	Zubehör	 52

D

Dehnungsmessstreifen	7
DMS 7	
Drehzahlmesssystem	9

Ε

Elektrische Messdaten	49

F

Fehlermeldungen	32

G

Galvanische Trennung 10)

I

Inbetriebnahme	24
Instandsetzung Messwelle	47

Κ

Kalibrierung mechanisch	26
Konfigurations-Kommandos	37
Konformitätserklärung	53
Kontrollfunktion	8
Kontrollsignal	38
Konventionen und Syntax	30

L

Leistungsaufnahme10

Μ

Messbereichsumschaltung	28, 37
Messkommandos	45
Messwelle instandsetzen	
Messwertabfrage	
Montage- und Demontageanleitung	21

R

RS-232	Drehmoment Interpretation	34
RS-232	Einstellungen	30
RS-232	Externe Triggerung	35
RS-232	Funktionsblock CONFiguration	37
RS-232	Funktionsblock FORMat	37
RS-232	Funktionsblock MEMory	37
RS-232	Funktionsblock TRIGger	37
RS-232	Kommando *IDN?	42
RS-232	Kommando IDN?	42
RS-232	Kommando INP:CONT:STAT?	38
RS-232	Kommando INP:GAIN:MULT:OFF	37
RS-232	Kommando M?	34
RS-232	Kommando MEAS:TORQ?	34
RS-232	Kommando MEAS?	34
RS-232	Kommando MEM:CDAT?	42
RS-232	Kommando MEM:CUST	42
RS-232	Kommando MEM:CWOR?	42
RS-232	Kommando MEM:DATA:MAGN?	42
RS-232	Kommando MEM:EXT:DATA:MAGN?)
		43
RS-232	Kommando MEM:EXT:LINE?	43
RS-232	Kommando	
	MEM:EXT:OUTP:FREQ:CONT?	43
RS-232	Kommando	
	MEM:EXT:OUTP:FREQ:MAGN?	43
RS-232	Kommando	
	MEM:EXT:OUTP:VOLT:CONT?	43
RS-232	Kommando	
	MEM:EXT:OUTP:VOLT:MAGN?	43
RS-232	Kommando MEM:EXT:RANG?	43
RS-232	Kommando MEM:EXT:VALI	43
RS-232	Kommando MEM:LINE?	42
RS-232	Kommando MEM:MDAT?	42
RS-232	Kommando MEM:OUTP:FREQ:MAGI	٧?
		42
RS-232	Kommando MEM:OUTP:VOLT:CON	Γ?
		42
RS-232	Kommando MEM:OUTP:VOLT:MAG	N?
		42
RS-232	Kommando MEM:RANG?	42

RS-232 Kommando MEM:SER?	42
RS-232 Kommando MEM:SOUR?	42
RS-232 Kommando MEM:SPE:IMP?	42
RS-232 Kommando MEM:SPE:MAX?	42
RS-232 Kommando MEM:TMAX	42
RS-232 Kommando MEM:TMIN?	42
RS-232 Kommando MEM:TYPE?	42
RS-232 Kommando TRIG:MODE:MEAS	41
RS-232 Kommunikation	29
RS-232 Messgeschwindigkeiten	33
RS-232 Reaktionszeiten	33
RS-232 Sensordaten ermitteln	42
RS-232C-Kommunikation	29

S

Schnittstellenparameter	30
Sensordaten ermitteln	42
Speisung	10
Stromaufnahme	10

т

Technische Daten	48
Triggermodus festlegen	41
Typischer Messablauf	36

U

Überlast mechanisch 24	4
------------------------	---

V

```
Verschraubung des Rotors ...... 23
```

W

Warmlaufphase	. 28
Wartung	. 47