

Miniatur-Druckkraftsensor

TYP **8415**

Typ 8415 Originalgröße

Highlights

- Messbereiche von 0 ... 200 N bis 0 ... 5000 N,
 0 ... 45.0 lbs bis 0 ... 1124.0 lbs
- Kleinste Abmessungen
- Preiswert
- Hergestellt aus Edelstahl

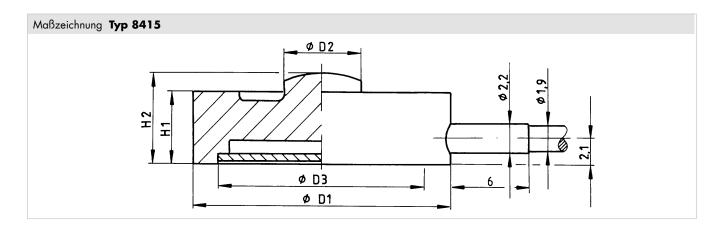
Optionen

- burster TEDS
- Einsatz unter Vakuum
- Standardisierter Kennwert 0,8 mV/V
- Diverse Kabellängen verfügbar

Anwendungsgebiete

- Vollautomatisierte Fertigungszentren
- Mess- und Kontrolleinrichtungen
- Feinwerktechnik
- Werkzeugbau
- Apparatebau

Produktbeschreibung

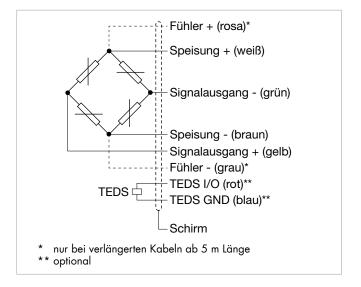

Aufgrund seiner geringen Abmessungen und der sehr soliden Ausführung kann dieser aus Edelstahl gefertigte Druckkraftsensor in den vielfältigsten Industriebereichen und im Labor eingesetzt werden. Dieser Druckkraftsensor ist leicht zu handhaben und ermöglicht einen relativ unkomplizierten Einbau. Seine Kleinheit prädestiniert ihn besonders für den Einsatz in sehr eng begrenzten Strukturen, wo statische und dynamische Druckkräfte zu messen sind.

Der Miniatur-Druckkraftsensor Typ 8415 ist eine flache, zylindrische Scheibe, deren Boden mit einer Abdeckung verschlossen ist. Der Lasteinleitknopf zur Aufnahme von Druckkräften ist als integraler Bestandteil des Sensors ausgebildet.

Im Messkörper befindet sich eine am Messelement applizierte DMS-Vollbrücke, die bei Krafteinwirkung eine zur Messgröße direkt proportionale Brückenausgangsspannung abgibt. Der kleine Durchmesser der Sensoren bewirkt eine hohe Steifigkeit und einen geringen Messweg. Die Messkraft darf nur zentrisch und querkraftfrei eingeleitet werden. Die Montage des Sensors muss auf einer ebenen und glatten Auflagefläche erfolgen.

8415	-	5200	5500	6001	6002	6005						
Messbereich		200 N	500 N	1000 N	2000 N	5000 N						
kalibriert in N und kN von 0		45.0 lbs	112.4 lbs	225.0 lbs	450.0 lbs	1124.0 lbs						
Genauigkeit												
Relative Linearitätsabweichung*				≤ ±0,15 % v.E.								
Relative Kennlinienabweichung*												
Relative Umkehrspanne			$\leq \pm 0,25 \% \text{ v.E.}$ $\leq \pm 0,4 \% \text{ v.E.}$ $\leq \pm 0$									
Temperatureinfluss auf das Nullsignal		≤ ±0,3 % v.E./10 K										
Temperatureinfluss auf den Kennwert				≤ ±0,3 % v.S./10 K								
Elektrische Werte												
Kennwert nominell				1 mV/V								
Messrichtung		Druckkraft										
Standardisierung		realisiert auf Pl	optional 0,8 mV/V (± 0,5 %) realisiert auf Platine im Anschlusskabel, 1,7 m vom Sensorgehäuse bzw. 0,3 m vom Kabelende									
Brückenwiderstand			$350~\Omega$ nom	ninell (Abweichungen si	ind möglich)							
Speisespannung				max. 5 V DC oder AC								
Isolationswiderstand				> 30 M Ω bei 45 V								
Umgebungsbedingu	ngen											
Nenntemperaturbereich				+15 °C +70 °C								
Gebrauchstemperatur- bereich		0 °C +80 °C										
Mechanische Werte												
Nennmessweg		ca. 30 µm										
Max. statische Gebrauchskraft		150 % der Nennkraft										
Bruchkraft				> 250 % der Nennkral	t							
Dynamische Belastbarkeit			empfohlen: 50 % der Nennkraft möglich: 70 % der Nennkraft									
Schutzart (EN 60529)				IP54								
Sonstiges		5200	5500	6001	6002	6005						
Werkstoff				Edelstahl 1.4542								
Eigenfrequenz	[kHz]	2,0	4,0	6,5	10,5	20,0						
Gewicht ohne Kabel	[g]			ca. 20								

^{*} Angaben im Bereich 20 % - 100 % der Nennkraft F


8415	-	5200	5500	6001	6002	6005						
Messbereich von 0		200 N	500 N	1000 N	2000 N	5000 N						
Geometrie												
Ø D1	[mm]			20,0								
Ø D2	[mm]			6,0								
Ø D3	[mm]			16,0								
H 1	[mm]	5,	5,5 8,0									
H 2	[mm]	7,0	7,0 9,0									
Allgemeintoleranz der Bemaßung			ISO 2768f									

Montage										
	Die Messkraft muss zentrisch und querkraftfrei eingeleitet werden. Um eine punktuelle Auflage zu vermeiden, ist darauf zu achten, dass der Sensor auf einer planen Basisfläche installiert wird.									
Montagehinweis	Die Befestigung des Sensors kann beispielsweise mittels Silikon, Wachs oder Klebstoff erfolgen. Seitlich wir- kende Einspannkräfte sind unbedingt vom Sensor fernzuhalten, da hierdurch Messfehler verursacht werden.									
	Während der Handhabung und des Einbaus muss beachtet werden, dass Kabelaustritt und Sensorkabel nicht auf unzulässig hohe Zug- und Biegekräfte beansprucht werden. Gegebenenfalls ist eine geeignete Zugentlastung vorzusehen.									

Elektrischer Anschluss

Ausgangssignal

burster Kraftsensoren sind auf Basis einer Wheatstoneschen DMS-Messbrücke konstruiert. Bei diesem Messprinzip ist die Ausgangsspannung (mV/V) stark von der Sensor-Versorgungsspannung abhängig. Geeignete Messverstärker, Anzeigegeräte und Prozess-Instrumente finden Sie auf unserer Webseite.

8415	_	5200 5500 60		6001	6002	6005							
Messbereich von 0		200 N	500 N	1000 N	2000 N	5000 N							
Elektrischer Anschluss													
Beschreibung		abgeschirmtes, TPE-isoliertes Kabel, 4-adrig, Kabellänge 1,7 m, schleppkettenfähig bei Standardisierung im Kabel 2,0 m											
Kabelbefestigung		Kabelhülse, gekrimpt											
Knickschutz		ohne											
Biegeradius		≥ 20 mm											

Zubehör

Stecker und Geräte

Bestellbezeichnung

Stecker								
9941	Anschlussstecker 12-polig, passend für alle Tischgeräte							
9900-V209	Anschlussstecker 9-polig, passend für SENSORMASTER , DIGIFORCE® und TRANS CAL							
9900-V229	Anschlussstecker 9-polig mit TEDS							
9900-V245	Anschlussstecker 8-polig, passend für ForceMaster							
Geräte								
7281-V0001	Mobiles Messgerät mit DMS Simulator und Sensortest (R _i , R _a , Shunt, R _{ISO})							
siehe Sektion 9	Auswertegeräte, Verstärker und Prozessüberwachungsgeräte wie z.B. Digitalanzeiger Typ 9180, Typ 9163, Verstärkermodul Typ 9250 oder DIGIFORCE® Typ 9307							

Kalibrierung

Prüf- und Kalibrierprotokoll									
Ist im Lieferumfang des Sensors enthalten	u. a. mit Angabe des Nullpunktes, des Kennwerts und des Kalibriersprungs								
Standard-Werkskali	orierschein für Kraftsensoren oder Messketten (WKS)								
Optional erhältlich	Unser Standard-Werkskalibrierschein beinhaltet 11 Messpunkte, bei Null beginnend in 20%-Schritten gleichmäßig über den gesamten Messbereich verteilt, für steigende und fallende Druckbelastung bei unveränderter Einbaulage.								
Sonder-Werkskalibri	erschein für Kraftsensoren oder Messketten (WKS)								
Auf Anfrage	Gerne kalibrieren wir Sensoren und Messketten nach Kundenwunsch.								
DAkkS-Kalibriersche	in für Sensoren und Messketten (DKD)								
Optional erhältlich	Unser DAkkS-zertifiziertes Kalibrierlabor bietet Kalibrierscheine nach DIN EN ISO 376 an. Der Kalibrierschein beinhaltet 21 Messpunkte, bei Null beginnend in 10%-Schritten gleichmäßig über den Messbereich verteilt, für steigende und fallende Druckbelastung in verschiedenen Einbaulagen.								

Mengenrabatt - Bei geschlossener Abnahme in völlig gleicher Ausführung gewähren wir ab:

Rabattstaffelung										
5 Stück	3 %									
8 Stück	5 %									
10 Stück	8 %									
Größer 10 Stück	auf Anfrage									

Bestellcode

Messbereich					Code Messbereich												
	0 200 N				5	2	0	0	0	45.	0 lbs						
	0 500 N				5	5	0	0	0	0 112.4 lbs							
	0	100	00 N		6	0	0	1	0 225.0 lbs								
	0	200	00 N		6	0	0	2	0 450.0 lbs								
	0	500	00 N		6	0	0	5	0 1124.0 lbs								
												Kurzfri	stig ab	Lager lie	eferbar		
										Ν	0	0	0	S	0	0	0
8	4	1	5	-					-				0	S	0	0	0
■ No	minelle	r Kennw	ert/nich	t standar	disiert					N							
				findlichke		8 mV/V				В							
_ 0.0			p		J 40. 07	·, ·											
An:	schlussk	abel 1,7	7 m (bei	Standar	disierung	im Kak	pel 2 m)				0						
		abel 3 i									F						
■ An:	schlussk	abel 5	m								G						
An:	schlussk	abel 3	m verlär	gert mitt	els Platin	e bei 1,					L						
An:	schlussk	abel 5	m verlär	gert *							М						
* verkü	rzte Liefer	zeit gegen	über Kabe	ellängen 3 n	n und 5 m c	am Stück											
												:					
Off	ene Lei	tungsen	den + 6	cm Einze	eladern							0					
■ 9-p	oliger S	Sub-D St	ecker Ty	/p 9900-	V209							В					
■ 9-p	■ 9-poliger Sub-D Stecker Typ 9900-V209 für 9163-V3xxxx E																
1 2-	■ 12-poliger Rundstecker Typ 9941 für burster Tischgeräte F																
■ 9-p	■ 9-poliger Sub-D Stecker mit TEDS Typ 9900-V229																
				nung 0,13		*								S			
* Anga	ben im Be	reich 20 %	6 - 100 %	der Nennkr	aft F												
■ Ne	■ Nenntemperaturbereich +15 °C +70 °C											0					