

High-Precision Torque Sensor

rotating, contactless

MODEL 8661

Highlights

- Measurement ranges of 0 ... 0.02 N·m to 0 ... 1000 N·m
- Very low linearity error $\leq \pm 0.05$ % F.S.
- Output signal 0 ... ±10 V
- Refresh rate 2000 measurements/s

Options

- Speed and angle measurement up to 2000 increments
- Dual range in different graduations
- Shaft end with keyway
- USB port including software

Applications

- Research & development
- Machinery and plant engineering
- Electric motor test
- Suitable for use in all types of test bench

With mounting block

In the cross-section

With mounting block and couplings

With couplings

Product description

The non-contact torque sensor type 8661 works according to the strain gage principle. Thanks to the inductive and optical transmission of the signals, the sensor is maintenance-free, the signals are digitized directly on the shaft and made available by the evaluation electronics as a voltage signal or via USB. Thanks to the high-quality bearing, depending on the measuring range, up to 25,000 rpm is possible. The bidirectional voltage output from -10 V ... +10 V allows the direction of rotation to be identified very easily.

To record the speed and angle of rotation, the sensor can optionally be equipped with different number of increments, up to 2000. This speed / angle signal is available as a TTL output signal.

The free DigiVision Light software is available in connection with USB, alternatively drivers for LabVIEW and DASYLab are ready for download.

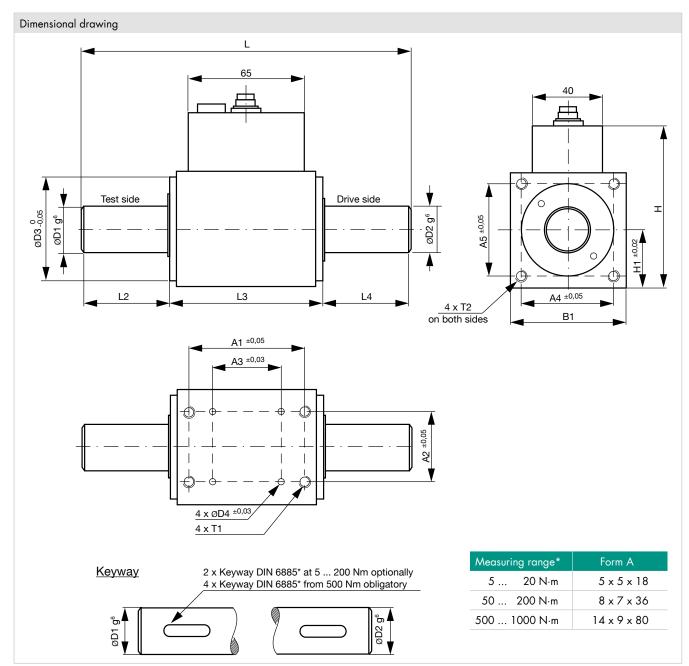
Connection cables in various lengths, metal bellows couplings and mounting blocks are available for integration in customer-specific systems.

🕤 Messtechnik Schaffhausen GmbH

Technical Data

8661	-	4020	4050	4100	4200	4500	5001	5002
Measuring range calibrated in N·m from 0		±0.02 N⋅m	±0.05 N⋅m	±0.1 N∙m	±0.2 N⋅m	±0.5 N∙m	±1 N∙m	±2 N⋅m
Accuracy								
Relative non-linearity		0.1 %	% F.S.			0.05 % F.S.		
Relative non-linearity dual range sensor				-			0.1 % F.S.	
Relative hysteresis				< 0.1 % F.S. /	dual range sens	or < 0.2 % F.S.		
olerance of sensitivity				±0.1 % F.S. /	dual range sens	or ±0.2 % F.S.		
lectrical values								
Rated supply voltage range	9			10 3	0 V DC (or 5 V	via USB)		
DC power consumption					approx. 2 W			
Dutput voltage at ⊾ rated torque					±10 V			
Dutput resistance					1 kΩ			
nsulation resistance					> 5 MΩ			
Refresh rate					2000/sek.			
Ripple					< 50 mV _{ss}			
Control signal Invironmental cond					10.00 V DC			
ange of operating and	mons				0 °C +60 °C			
nominal temperature Sensitivity of		an the		15% EC /V /	2. measuring ra	and dual range		EC /V
emperature effects					2. measuring rai			
Mechanical values								
Oynamic overload safe				recomment	led 70 % of nor	ninal torque		
Max. operation torque			20	0 % of nominal	torque / dual ra	ange sensor 150) %	
Breakaway torque				300	% of nominal to	orque		
Alternating load				70	% of nominal to	rque		
Maximum limit axial oad	[N]				50			
Maximum limit radial oad	[N]		:	3		4	7	13
Spring constant	[N·m/rad]	1	0	20	50	100	100	180
Aass moment of inertia neasuring side	[10 ⁻⁶ kg*m²]		0.048		0.05	0.06	0.062	0.077
Mass moment of inertia drive side	[10⁴ kg*m²]				2.2			
Max. rotary speed	[min ⁻¹]				25000			
Other								
Material		aluminium; strength alumi shaft ends st	e of anodized Shaft: high- nium 3.1354; tainless steel 542			ade of anodized stainless steel 1		
Protection class				ac	c. EN 60529, IF	240		
Neight	[g]				300			
nstallation								
Installation instructions		Please refer		ig instructions fo	al and radial for r detailed inform na from parallel	nation www.bur	ster.com. Suitab	le couplings

Messtechnik Schaffhausen GmbH


Mühlenstrasse 4, CH-8260 Stein am Rhein, Telefon +41 52-672 50 00, Telefax +41 52-672 50 01, www.mts.ch, e-mail: info@mts.ch

Technical Data

8661	-	5005	5010	5020	5050	5100	5200	5500	6001
Measuring range calibrated in N·m from 0		±5 N∙m	±10 N·m	±20 N⋅m	±50 N∙m	±100 N·m	±200 N·m	±500 N∙m	±1000 N·m
Accuracy							·	·	
Relative non-linearity					0.05	% F.S.			
Relative non-linearity dual range sensor					0,1 9	% F.S.			
Relative hysteresis				< 0.1 %	F.S. / dual rai	nge sensor < ().2 % F.S.		
Tolerance of sensitivity				±0.1 %	F.S. / dual rai	nge sensor ±0	.2 % F.S.		
Electrical values									
Rated supply voltage range	•			1() 30 V DC	(or 5 V via US	SB)		
DC power consumption					appro	x. 2 W			
Output voltage at ± rated torque					±l	0 V			
Output resistance					1	kΩ			
Insulation resistance					> 5	MΩ			
Refresh rate					2000)/sek.			
Ripple					< 50) mV.			
Control signal					10.00) V DC			
Environmental cond	itions								
Range of operating and nominal temperature					0 °C	+60 °C			
Sensitivity of temperature effects			the zero point the sensitivity						
Mechanical values									
Dynamic overload safe				recor	nmended 70 S	% of nominal t	orque		
Max. operation torque				200 % of no	minal torque ,	/ dual range s	ensor 150 %		
Breakaway torque					300 % of no	ominal torque			
Alternating load					70 % of no	minal torque			
Maximum limit axial load	[N]		200			300		5	00
Maximum limit radial load	[N]	15	30	60	125	2	15	250	500
Spring constant	[N·m/rad]	800	1700	3000	14000	25000	40000	150000	220000
Mass moment of inertia measuring side	[10 ⁻⁶ kg*m²]	2.2	2.35	2.6	33.3	33.7	35.0	600	600
Mass moment of inertia drive side	[10 ^{.6} kg*m²]	14	4.3	14.6	85.7	85.9	85.5	12	200
Max. rotary speed	[min ^{.1}]			150	000			70	000
Other									
Material			Housir	ıg: made of a	nodized alumi	inium; Shaft: s	tainless steel 1	.4542	
Protection class					acc. EN 6	0529, IP40			
Weight	[g]		900			1500		60	000
Installation									
Installation instructions			Do not excee fer to our oper ould be used to	ating instructi	ons for detaile		www.burster.	com. Suitable	

Messtechnik Schaffhausen GmbH

For detailed dimensions you can find sensor CAD data on our website www.burster.com.

S Messtechnik Schaffhausen GmbH

Mühlenstrasse 4, CH-8260 Stein am Rhein, Telefon +41 52-672 50 00, Telefax +41 52-672 50 01, www.mts.ch, e-mail: info@mts.ch

8661	-	4020	4050	4100	4200	4500	5001	5002
Measuring range from 0		±0.02 N·m	±0.05 N⋅m	±0.1 N·m	±0.2 N⋅m	±0.5 N⋅m	±lN⋅m	±2 N·m
Geometry								
A1	[mm]				45			
A2	[mm]				31			
A3	[mm]				30			
A4	[mm]				26			
A5	[mm]				24			
B1	[mm]				40			
D1	[mm]			59	g6			6g6
D2	[mm]				8g6			
D4 Ø / deep	[mm]				Ø 3.1 / 5			
Н	[mm]				60			
H1	[mm]				15			
L	[mm]			8	7			94
L2	[mm]			1	0			14
L3	[mm]				66			
L4	[mm]			1	1			14
T1 / deep	[mm]				M4 / 8			
T2 / deep	[mm]				M3 / 5,5			

8661	-	5005	5010	5020	5050	5100	5200	5500	6001
Measuring range from 0		±5 N⋅m	±10 N⋅m	±20 N⋅m	±50 N⋅m	±100 N⋅m	±200 N⋅m	±500 N⋅m	±1000 N·m
Geometry									
A1	[mm]			5	7			5	0
A2	[mm]			4	4			9	0
A3	[mm]			4	.1			3	0
A4	[mm]		45.3			54.4		88	3.4
A5	[mm]		45.3			54.4		88	3.4
B1	[mm]		55			64		1	07
D1	[mm]		15g6			26g6		45	igó
D2	[mm]		15g6			26g6		45	igó
D4 Ø / deep	[mm]			Ø 3.	1/5			Ø 4.	/ 10
Н	[mm]		85			94		1	37
H1	[mm]		27.5			32		53	3.5
L	[mm]		143			168		2	85
L2	[mm]		30			45		9	25
L3	[mm]		83			78		9	25
L4	[mm]		30			45		9	25
T1 / deep	[mm]		M5 / 9			M5 / 8		M8	/ 20
T2 / deep	[mm]			M4	/ 6			M6	/ 10

MTS Messtechnik Schaffhausen GmbH

Mühlenstrasse 4, CH-8260 Stein am Rhein, Telefon +41 52-672 50 00, Telefax +41 52-672 50 01, www.mts.ch, e-mail: info@mts.ch

Electrical values

12-pin connector or USB (Option, USB connection cable included)

Wiring Code depends on	the options selected	
Pin	Assignment	Cable colour (99540-000F-052XXXX)
А	NC	
В	Angular exit B	violet
С	Moment output +	yellow
D	Moment output -	green
E	Supply -	blue
F	Supply +	red
G	Angular exit A	pink
Н	NC	
J	Ground angle output, measuring range switchover	black
К	Control signal	White
L	Measuring range switchover	brown
Μ	NC	

Accessories

Mounting block model 8661-Z00X

If the sensor needs to be replaced, the locating pin speeds up replacement, avoiding the need for laborious realignment. This can be useful especially when the sensor is only used occasionally in the load path. The mounting block has a central hole and special design allowing a range of options for reliable cable attachment. Two clips ensure the sensor is fixed securely. For further information please see accessories data sheet 8661-ZO0X

Options

USB interface

This sensor version has a USB connection instead of the $\pm 10~V$ output. The sensor is powered via USB, no further connections required.

In addition to torque, the speed or rotation angle measured values are optionally available. The calculated mechanical performance in is also displayed in DigiVision.

Free drivers are available for integration into LabVIEW and DASYLab, also a DLL for integration into your own programs.

Metal bellow couplings

For optimum compensation of misalignment we recommend torsionally free metal bellow couplings. They are characterized by their excellent torsional stiffness during torque load and their low restoring forces. The couplings are optionally with keyways available.

For further information please see accessories data sheet 869X.

Messtechnik Schaffhausen GmbH Mühlenstrasse 4, CH-8260 Stein am Rhein, Telefon +41 52-672 50 00, Telefax +41 52-672 50 01, www.mts.ch, e-mail: info@mts.ch

Dual range

The sensor with two measuring ranges corresponds to its dimensions of the standard version, but has two separately calibrated measuring ranges. The measuring ranges are switched within <50 ms, even during measurement operation, by applying the operating voltage to pin L or via USB. The following graduations are available:

Graduat	tion:	1:10	1:4	1:5	Graduation:	1:10	1:4	
		Upper s	cale value of se	cond range		Upper so	cale value of se	cond re
0.5 1	N∙m	-	-	0.1 N·m	50 N·m	5 N⋅m	-	10
1 1	N∙m	-	-	0.2 N·m	100 N·m	10 N∙m	-	20
2 1	N∙m	0.2 N·m	0.5 N·m	-	200 N·m	20 N∙m	50 N∙m	
5 1	N∙m	0.5 N·m	-	1 N∙m	500 N·m	50 N∙m	-	100
10 1	N∙m	1 N∙m	-	2 N⋅m	1000 N·m	100 N∙m	-	200
20 1	N∙m	2 N⋅m	5 N·m	-				

The second, smaller measuring range can be activated via USB or by applying the operating voltage to pin L.

Torque sensor with integrated rotational speed / angular displacement measurement

8661 torque sensors are optionally available with integrated rotational speed and angular displacement measurement. Two pulse channels with TTL level – channel A and channel B – are always available. For clockwise rotation (looking at the test side), channel A leads channel B with a phase shift of 90°. Only one pulse channel is needed for speed measurement.

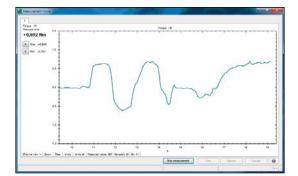
For angular displacement measurement (or direction detection), both channels need to be evaluated. To achieve the maximum angular resolution, four-edge decoding must be used to read both the rising and falling edges. For instance an angular resolution of up to 0.045° can then be achieved with an encoder disk having 2000 increments.

Maximum speed:

Encoder disk Encoder disk Encoder disk Encoder disk	with 1024 increment with 400 increment	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Increments	from 0 0,02 N·m to 0 2 N·m	from 0 5 N⋅m to 0 200 N⋅m	from 0 500 N·m to 0 1000 N·m
2000	-	yes	-
1024	yes	yes	yes
400	yes	yes	-
240	yes	_	-

А								
В								
		9	0°	27	70°			
	()°	0° 18	30°	30	50°		

The measuring accuracy of the rotational speed and angular displacement measurement is directly related to the speed and the encoder disk used. With the USB option, another influencing factor is the setting of the averaging, which should be adapted to the speed range used.



DigiVision configuration and analysis software

Features

- Tare function
- Configuration options for averaging and filters; value stored in sensor
- Intuitive user interface
- Automatic sensor identification
- Sensor calibration data readout

DigiVision Light PC softwa	re
freely available on our website	DigiVision configuration and analysis software max. 200 measured value/s for one sensor
DigiVision Standard PC so	ftware
Model 8661-P100	DigiVison configuration and analy- sis software up to 16 channels, no limit to the refreh rate
PC-Software DigiVision Pre	ofessional
Model 8661-P200	DigiVision configuration and analysis software with additional configurable maths channel; up to 32 channels

- Numerical & graphical display and measurement of the physical torque value
- Practical start and stop trigger functions
- 4 limits can be configured for each measurement channel
- MIN/MAX value acquisition
- Automatic scaling
- Measurement reports can be saved as Excel or PDF file
- Archive viewer for displaying sets of curves
- X Multichannel measurements, even with different sensors (e.g. 9206, 8631, 8625) available with standard version

Accessories

Order code	
9940	Mating connection 12 pin (scope of delivery)
9900-V539	Mating connection 90°-angle
99540-000F-0520030	Connecting cable, length 3 m, other end free
99539-000F-0520030	Connecting cable, length 3 m, plug with 90°-angle, other end free
99209-540G-0160030	Connecting cable for model 7281 and model 9311, length 3 m, with external supply
99163-540A-0520030	Connecting cable, length 3 m, 8661 to DIGIFORCE® 9307combined cannel D (option channel)
99209-215A-0090004	Adapter cable to DIGIFORCE® 9307 standard channel A/B and C (usable only in connection with type 99163-540A-052xxxx)
	DigiVision Light configuration and analysis software, max. 200 measured value/s for one sensor (freely available on our website)
8661-Z010	USB cable connector type A, type BMini, length 2 m, black
8661-P100	DigiVision Standard configuration and analysis software; up to 16 channels
8661-P200	DigiVision Professional with additional configurable maths channel; up to 32 channels
8600-Z00X	Mounting block, see accessories data sheet 8661-Z00X
8600-Z010	Power pack for external supply

Calibration

Manufacturer Calibration (Certificate (WKS)
	Special calibration for clockwise or/and counter clockwise direction torque, in 20% steps of range up and down.
Calibration Certificate with	accreditation symbol
	Calibration certificate with accreditation symbol per DIN 51309, clockwise or/and anticlockwise torque, with eight steps spaced across the measurement range, increasing and decreasing.

MTS Messte Mühlenst

Messtechnik Schaffhausen GmbH

Mühlenstrasse 4, CH-8260 Stein am Rhein, Telefon +41 52-672 50 00, Telefax +41 52-672 50 01, www.mts.ch, e-mail: info@mts.ch

Order code

	easu	uring R	ange			Co	de							
(0	±0.0	02 N∙m	1	4	0	2	0						
(0	±0.0	05 N∙m	1	4	0	5	0						
(0	±0.	1 N∙m	1	4	1	0	0						
(0	±0.2	2 N√mr	1	4	2	0	0						
(0	±0.:	5 N∙m	1	4	5	0	0						
C	0	±1	N∙m	1	5	0	0	1						
C	0	±2	N∙m	1	5	0	0	2						
C	0	±5	N∙m	1	5	0	0	5						
C	0	±10	N∙m		5	0	1	0						
C	0	±20	N∙m		5	0	2	0						
C	0	±50	N∙m		5	0	5	0						
(0	±100	N∙m		5	1	0	0						
		±200	N∘m	1	5	2	0	0						
(0	±500	N∘m	1	5	5	0	0						
(0 :	±1000	N∙m	1	6	0	0	1				Stan	dard	
											0	0	0	
8 0	6		_											
tandara	d se		1 e meas	– suring ro	ange				-	V	0			
 Standard Standard Dual-rai Dual-rai Dual-rai Without Speed/ Speed/ Speed/ Speed/ Speed/ 	d sei rd se inge inge inge inge inge inge inge ing	nsor, on version, version, version, ed/ang e measu e measu e measu	e meas graduc graduc graduc le meas rement rement	suring ration 1: ation 1: ation 1: ation 1: ation 1: 0024 i 240 in	10 avail 5 availa 4 availa t cremen cremen	ıble ≥ 0 ıble ≥ 2 ts nts ts	.5 N∙m		-	V		0 1 2 3 4		
tandara Standar Dual-rau Dual-rau Without Speed/ Speed/ Speed/	d sei rd se inge v inge v angla /angla /angla	nsor, on version, version, version, ed/ang e measu e measu e measu e measu	e meas graduc graduc graduc le meas rement rement	suring ration 1: ation 1: ation 1: ation 1: ation 1: 0024 i 240 in	10 avail 5 availa 4 availa t cremen cremen	ıble ≥ 0 ıble ≥ 2 ts nts ts	.5 N∙m		-	V	0 1 2			
tandara Standar Dual-ran Dual-ran Without Speed/ Speed/ Speed/ Speed/ Speed/	d ser rd se inge v inge v inge v angla (angla (angla (angla (angla volta)	nsor, on version, version, version, ed/ang e measu e measu e measu e measu ge 0	e meas graduc graduc graduc le meas rement rement rement	suring ration 1: ation 1: ation 1: ation 1: ation 1: 0024 i 240 in	10 avail 5 availa 4 availa t cremen cremen	ıble ≥ 0 ıble ≥ 2 ts nts ts	.5 N∙m		-	V	0 1 2		0	
Standar Standar Dual-ran Dual-ran Without Speed/ Speed/ Speed/	d ser rd se inge v inge v it spe /angli / / / /angli /angli / / / / / / / / / / / / / / / / / / /	nsor nsor, on version, version, ed/ang e measu e measu e measu e measu ge 0 ge 0 e	e meas graduc graduc graduc le meas rement rement rement rement	suring ration 1: ation 1: ation 1: ation 1: ation 1: 0024 i 240 in	10 avail 5 availa 4 availa t cremen cremen	ıble ≥ 0 ıble ≥ 2 ts nts ts	.5 N∙m		-	V	0 1 2		0 1	

