

High Precision Torque Sensor

for non-rotating applications

MODEL 8631

NEW

burster TEDS

Highlights

- Measuring ranges from 0 ... 5 N·m up to 0 ... 200 N·m
- Linearity error ≤0,1 % F.S.
- Standardized output signal
- Tare function, filter and average values configurable
- Extremely high, reliable axial load

Options

- Output signal ±10 V / USB
- burster TEDS
- Dual-range model

Applications

- Test setups for precision mechanics
- Measuring reaction torques for motors
- Measuring car-seat adjustment torques
- Measuring operating torques for door release mechanisms

Product description

This high-precision torque sensor is designed for both static and dynamic measurements on non-rotating parts. The through-hole can be used to feed parts such as cables or Bowden cables through the sensor.

The mounting flanges contain threaded holes and through-holes so that the sensor can be fitted at either end. With no rotating parts, this sensor needs no maintenance when used correctly.

The modular design of this strain-gage sensor allows precise configuration for the desired application.

With the integrated amplifier option, the sensor directly supplies a voltage signal of 0 ... \pm 10 V that is proportional to the torque. The sensor can be configured via the micro-USB interface, providing access to, for example, a filter frequency setting, averaging, and a tare function. With the USB option, in addition to the voltage output, the measurement function is available via USB as well. The sensor comes with the DigiVision software for performing measurements and data archiving, with drivers additionally available e.g. for LabVIEW. Integration into custom software is possible via DLL. Examples can be found on our website www.burster.com

The burster TEDS option (electronic data sheet, memory chip with sensor-specific data) allows rapid configuration of compatible evaluation units (instrumentation amplifier, indicator, ...).

5005-

VXXXXX

±5

5010- VXXXXX	5020- VXXXXX	5050- VXXXXX	5100- VXXXXX	5200- VXXXXX
±10	±20	±50	±100	±200

Higher measuring ranges on request.

			0.1 % F.S. 0.1 % F.S. 750 1000 2000 4000 6000										
Accuracy													
Relative non-linearity				0.1 9	% F.S.								
Relative hysteresis				0.1 9	% F.S.								
Maximum limit axial load	[N]	500	500 750 1000 2000 4000										
Maximum limit radial load	[N]	50 75		100	100 200		600						
Spring constant	[N·m/rad]	650	1500	5500	15000	30000	135000						
Mass moment of inertia measuring side	[10 ⁻⁶ kg*m ²]	37	38	165	170	465	480						

Electrical values without	amplifier / USB
Sensitivity	1 mV/V
Tolerance of sensitivity	0.1 % F.S.
Bridge resistance (full bridge)	1000 Ω
Excitation voltage	5 V (max. 10 V)

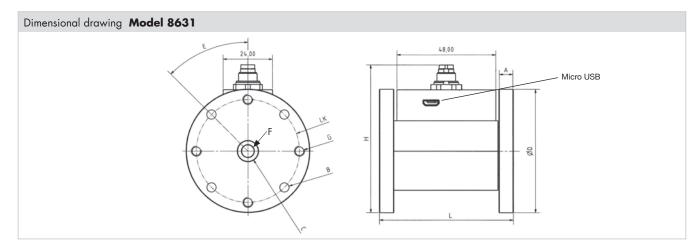
Environmental conditions v	vithout amplitier / USB
Range of operating and nominal temperature	-20 °C +80 °C
Sensitivity of temperature effects	on the zero point 0.015 % F.S./K on the sensitivity 0.010 % F.S./K

Electrical values with am	plifier / USB
Rated supply voltage range	5 30 V DC (or 5 V via USB)
DC power consumption	ca. 1 W
Output voltage at ± rated torque	±10 V
Output resistance	<500 Ω
Insulation resistance	zero (binding capability)
-3 dB cut-off frequency	5000 Hz
Ripple	<50 mV
Calibration signal	10.00 V DC
Environmental conditions	s with amplifier / USB

Range of operating and nominal temperature	0 °C +60 °C							
Sensitivity of temperature effects:	on the zero point 0.015 % F.S./K on the sensitivity 0.010 % F.S./K							
Mechanical values								
Dynamic overload safe	up to 70 % from nominal value							
Max. operation torque	150 % of nominal torque							
Breakaway torque	300 % of nominal torque							
Alternating load	70 % of nominal torque							
Other	5005 5010 5020 5050 5100 5200							
Material:	Housing: made of anodized aluminium Shaft: steel shell 1.4542							
Protection class	acc. EN 60529, IP40							

1700

950


1*7*50

Weight

400

Geometrie

8631	-	5005- VXXXXX	5010- VXXXXX	5020- VXXXXX	5050- VXXXXX	5100- VXXXXX	5200- VXXXXX	
L	[mm]	6	5	7	0	8	80	
D	[mm]	6	0	8	0	10	00	
Α	[mm]	;	7	1	0	1	2	
Н	[mm]	7	72		6	1	05	
LK	[mm]	5	50		0	85		
ØB	[mm]	4.5 (4	4.5 (4 x 90°)		x 60°)	9.0 (6 x 60°)		
G	[mm]	4 x	4 x M5		M5	6 × M8		
Е	[mm]	4.	5°	30°				
F	[mm]		6		1	2		
С	[mm]	10	H7	20 H7				
Mounting								
Mounting instructions				and radial forces d tions for detailed in		peration (see techn purster.com.	ical data).	

For detailed dimensions, you can find CAD data for the sensor on our website www.burster.com.

Electrical values

7-pin miniature connector, additionally micro-USB interface for configuration/measurement (Option, USB connection cable included)

Wiring Code depends on t	he options selected	
Pin	Assignment without electronic	Assignment with electronic
1	Bridge supply -	Supply GND
2	Bridge supply +	Supply +5 30 V
3	Shield	Shield
4	Signal +	Output signal ±10 V
5	Signal -	Output signal GND
6	TEDS I/O (option) / NC	Control signal
7	TEDS GND (option) / NC	Switching between ranges (option)

Integrated ampifier with USB interface

This sensor model comes with a USB port in addition to the $0 \dots \pm 10 \text{ V}$ output. Two versions are available:

- ± 10 V output signal, USB used solely for configuration
- ± 10 V output signal, USB used for both configuration and measurement

When a USB-based measurement is launched, the analog output signal is disabled because it is not possible to use both forms of output simultaneously.

With both versions, the measurement signal can be tared, averaged or filtered. These functions can be set up and/or activated via USB and the free version of DigiVision.

Dual-range version

With integrated amplifier, the dual-range option can be selected. The following subdivisions are available:

Graduation:	1:2	1:4	1:5	
	Upper se	cale value of sec	cond range	
5 N·m	-	-	1 Nm	
10 N·m	5 Nm	-	2 Nm	
20 N·m	10 Nm	5 Nm	-	
50 N⋅m	-	-	10 Nm	
100 N⋅m	50 Nm	-	20 Nm	
200 N·m	100 Nm	50 Nm	-	

The second, smaller measuring range can be activated via USB or by applying the operating voltage to pin 7.

DigiVision configuration and analysis software

Features

- Can be used to actuate tare function, with value stored in sensor
- Configuration options for averaging and filters; value stored in sensor
- Intuitive user interface
- Automatic sensor identification
- Sensor calibration data readout

Chemican - Date | Date

DigiVision Light PC software

DigiVision configuration and analysis software max. 200 measured value/s for one sensor (freely available on our website)

DigiVision Standard PC software

DigiVison configuration and analysis software up to 16 channels

Model 8630-P100

PC-Software DigiVision Professional

DigiVision configuration and analysis software including maths functions; up to 32 Model 8630-P200

USB measurement option

- Numerical & graphical display and measurement of the physical torque value
- Practical start and stop trigger functions
- 4 limits can be configured for each measurement channel
- MIN/MAX value acquisition
- Automatic scaling
- Measurement reports can be saved as Excel or PDF file
- Archive viewer for displaying sets of curves
- X Multichannel measurements, even with different sensors (e.g. 9206, 8631, 8661) available with standard version

Accessories

Order code	
9900-V594	Mating connection 7 pin
9900-V596	Mating connection 90°-angle
99594-000A-0150030	Connecting cable, length 3 m, other end free
99596-000A-0150030	Connecting cable, length 3 m, plug with 90°-angle, other end free
99141-594A-0150030	Connecting cable for burster desktop instruments with 12 pin socket, length 3 m
99209-586C-0510030	Connecting cable for model 9235, model 7281 and model 9311, length 3 m
9900-K358	Micro USB cable, length 1.8 m
8631-P100	DigiVision Standard configuration and analysis software; up to 16 channels
8631-P200	DigiVision Professional with additional configurable maths channel; up to 32 channels
	DigiVision Light configuration and analysis software, max. 200 measured value/s for one sensor (freely available on our website)

Calibration

Manufacturer Calibration Certificate (WKS)								
	Special calibration for clockwise or/and counter clockwise direction torque, in 20 % steps of range up and down.							
DAkkS Calibration Certifica	DAkkS Calibration Certificate							
DAkkS calibration certificate per DIN 51309, clockwise and/or anticlockwise torque, with eight steps spaced across the measurement range, increasing and decreasing.								

Order Code

	Meas	uring F	Range			Co	de								
	0	0 ±5 N·m 5 0 0 5													
	0 ±10 N·m 5 0 1 0														
	0 .	. ±20	N·m		5	0	2	0							
	0 .	±50	$N \cdot m$		5	0	5	0							
	0 .	. ±100	$N \cdot m$		5	1	0	0							
	0.	. ±200	$N \cdot m$		5	2	0	0					Standard	ŀ	
											0	0	0	3	0
8	6	3	1	-	Х	Х	X	Х	-	V		0		3	0
StanDuaDuaDua	8 6 3 1 - X X X X - V tandard sensor Standard sensor, one measuring range Dual-range version, graduation 1:5 Dual-range version, graduation 1:4 3 Dual-range version, graduation 1:2 4									2 3					
	Output voltage 10 V incl. configuration USB Output voltage 10 V incl. USB configuring and measuring USB												0		
					iguring (and med	asuring (USB							
			ardized,		:- TEE								3		
Out	out sign	al stand	ardized,	, mV/V $^{\prime}$	with IEL)5							4		